Understanding Softmax Confidence and Uncertainty
- URL: http://arxiv.org/abs/2106.04972v1
- Date: Wed, 9 Jun 2021 10:37:29 GMT
- Title: Understanding Softmax Confidence and Uncertainty
- Authors: Tim Pearce, Alexandra Brintrup, Jun Zhu
- Abstract summary: It is often remarked that neural networks fail to increase their uncertainty when predicting on data far from the training distribution.
Yet naively using softmax confidence as a proxy for uncertainty achieves modest success in tasks exclusively testing for this.
This paper investigates this contradiction, identifying two implicit biases that do encourage softmax confidence to correlate with uncertainty.
- Score: 95.71801498763216
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: It is often remarked that neural networks fail to increase their uncertainty
when predicting on data far from the training distribution. Yet naively using
softmax confidence as a proxy for uncertainty achieves modest success in tasks
exclusively testing for this, e.g., out-of-distribution (OOD) detection. This
paper investigates this contradiction, identifying two implicit biases that do
encourage softmax confidence to correlate with epistemic uncertainty: 1)
Approximately optimal decision boundary structure, and 2) Filtering effects of
deep networks. It describes why low-dimensional intuitions about softmax
confidence are misleading. Diagnostic experiments quantify reasons softmax
confidence can fail, finding that extrapolations are less to blame than overlap
between training and OOD data in final-layer representations.
Pre-trained/fine-tuned networks reduce this overlap.
Related papers
- Confidence Intervals and Simultaneous Confidence Bands Based on Deep Learning [0.36832029288386137]
We provide a valid non-parametric bootstrap method that correctly disentangles data uncertainty from the noise inherent in the adopted optimization algorithm.
The proposed ad-hoc method can be easily integrated into any deep neural network without interfering with the training process.
arXiv Detail & Related papers (2024-06-20T05:51:37Z) - Revisiting Confidence Estimation: Towards Reliable Failure Prediction [53.79160907725975]
We find a general, widely existing but actually-neglected phenomenon that most confidence estimation methods are harmful for detecting misclassification errors.
We propose to enlarge the confidence gap by finding flat minima, which yields state-of-the-art failure prediction performance.
arXiv Detail & Related papers (2024-03-05T11:44:14Z) - Revisiting Softmax for Uncertainty Approximation in Text Classification [45.07154956156555]
Uncertainty approximation in text classification is an important area with applications in domain adaptation and interpretability.
One of the most widely used uncertainty approximation methods is Monte Carlo (MC) Dropout, which is computationally expensive.
We compare softmax and an efficient version of MC Dropout on their uncertainty approximations and downstream text classification performance.
We find that, while MC dropout produces the best uncertainty approximations, using a simple softmax leads to competitive and in some cases better uncertainty estimation for text classification at a much lower computational cost.
arXiv Detail & Related papers (2022-10-25T14:13:53Z) - Training Uncertainty-Aware Classifiers with Conformalized Deep Learning [7.837881800517111]
Deep neural networks are powerful tools to detect hidden patterns in data and leverage them to make predictions, but they are not designed to understand uncertainty.
We develop a novel training algorithm that can lead to more dependable uncertainty estimates, without sacrificing predictive power.
arXiv Detail & Related papers (2022-05-12T05:08:10Z) - Deterministic Neural Networks with Appropriate Inductive Biases Capture
Epistemic and Aleatoric Uncertainty [91.01037972035635]
We show that a single softmax neural net with minimal changes can beat the uncertainty predictions of Deep Ensembles.
We study why, and show that with the right inductive biases, softmax neural nets trained with maximum likelihood reliably capture uncertainty through the feature-space density.
arXiv Detail & Related papers (2021-02-23T09:44:09Z) - Uncertainty-Aware Deep Calibrated Salient Object Detection [74.58153220370527]
Existing deep neural network based salient object detection (SOD) methods mainly focus on pursuing high network accuracy.
These methods overlook the gap between network accuracy and prediction confidence, known as the confidence uncalibration problem.
We introduce an uncertaintyaware deep SOD network, and propose two strategies to prevent deep SOD networks from being overconfident.
arXiv Detail & Related papers (2020-12-10T23:28:36Z) - Revisiting One-vs-All Classifiers for Predictive Uncertainty and
Out-of-Distribution Detection in Neural Networks [22.34227625637843]
We investigate how the parametrization of the probabilities in discriminative classifiers affects the uncertainty estimates.
We show that one-vs-all formulations can improve calibration on image classification tasks.
arXiv Detail & Related papers (2020-07-10T01:55:02Z) - Discriminative Jackknife: Quantifying Uncertainty in Deep Learning via
Higher-Order Influence Functions [121.10450359856242]
We develop a frequentist procedure that utilizes influence functions of a model's loss functional to construct a jackknife (or leave-one-out) estimator of predictive confidence intervals.
The DJ satisfies (1) and (2), is applicable to a wide range of deep learning models, is easy to implement, and can be applied in a post-hoc fashion without interfering with model training or compromising its accuracy.
arXiv Detail & Related papers (2020-06-29T13:36:52Z) - Uncertainty Estimation Using a Single Deep Deterministic Neural Network [66.26231423824089]
We propose a method for training a deterministic deep model that can find and reject out of distribution data points at test time with a single forward pass.
We scale training in these with a novel loss function and centroid updating scheme and match the accuracy of softmax models.
arXiv Detail & Related papers (2020-03-04T12:27:36Z) - Fine-grained Uncertainty Modeling in Neural Networks [0.0]
We present a novel method to detect out-of-distribution points in a Neural Network.
Our method corrects overconfident NN decisions, detects outlier points and learns to say I don't know'' when uncertain about a critical point between the top two predictions.
As a positive side effect, our method helps to prevent adversarial attacks without requiring any additional training.
arXiv Detail & Related papers (2020-02-11T05:06:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.