論文の概要: Self-Paced Context Evaluation for Contextual Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2106.05110v1
- Date: Wed, 9 Jun 2021 14:39:09 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-10 15:02:35.092367
- Title: Self-Paced Context Evaluation for Contextual Reinforcement Learning
- Title(参考訳): 文脈強化学習のための自己ペース文脈評価
- Authors: Theresa Eimer, Andr\'e Biedenkapp, Frank Hutter, Marius Lindauer
- Abstract要約: 自己ペースト文脈評価(SPaCE)
セルフペースの学習に基づいて、spcはオンラインのタスクキュリキュラを、計算オーバーヘッドが少なく自動的に生成する。
2つの環境における異なる値ベースRLエージェントの学習を高速化するSPaCEの能力を実証する。
- 参考スコア(独自算出の注目度): 34.8990562818147
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reinforcement learning (RL) has made a lot of advances for solving a single
problem in a given environment; but learning policies that generalize to unseen
variations of a problem remains challenging. To improve sample efficiency for
learning on such instances of a problem domain, we present Self-Paced Context
Evaluation (SPaCE). Based on self-paced learning, \spc automatically generates
\task curricula online with little computational overhead. To this end, SPaCE
leverages information contained in state values during training to accelerate
and improve training performance as well as generalization capabilities to new
instances from the same problem domain. Nevertheless, SPaCE is independent of
the problem domain at hand and can be applied on top of any RL agent with
state-value function approximation. We demonstrate SPaCE's ability to speed up
learning of different value-based RL agents on two environments, showing better
generalization capabilities and up to 10x faster learning compared to naive
approaches such as round robin or SPDRL, as the closest state-of-the-art
approach.
- Abstract(参考訳): 強化学習(rl)は、ある環境において一つの問題を解決するために多くの進歩を遂げてきたが、問題の見当たらないバリエーションに一般化する学習方針は依然として困難である。
問題領域のそのような事例について学習する際のサンプル効率を向上させるために,SPaCE(Self-Paced Context Evaluation)を提案する。
自己ペース学習に基づいて、 \spc は計算オーバーヘッドが少なくて自動的に \task curricula online を生成する。
この目的のために、SPaCEはトレーニング中に状態値に含まれる情報を活用して、トレーニングパフォーマンスを加速し、改善し、同じ問題領域から新しいインスタンスに一般化する。
それでも、SPaCEは問題領域とは独立であり、状態値関数近似を持つ任意のRLエージェントに適用される。
SPaCEの2つの環境における異なる値ベースRLエージェントの学習を高速化し、より優れた一般化能力を示し、ラウンドロビンやSPDRLのような単純なアプローチと比較して最大10倍の学習速度を示す。
関連論文リスト
- Mind the Interference: Retaining Pre-trained Knowledge in Parameter Efficient Continual Learning of Vision-Language Models [79.28821338925947]
ドメインクラスのインクリメンタル学習は現実的だが、継続的な学習シナリオである。
これらの多様なタスクに対処するために、事前訓練されたビジョンランゲージモデル(VLM)を導入し、その強力な一般化性を実現する。
事前訓練されたVLMにエンコードされた知識は、新しいタスクに適応する際に妨げられ、固有のゼロショット能力を損なう。
既存の手法では、膨大なオーバーヘッドを必要とする余分なデータセットに知識蒸留でVLMをチューニングすることで、この問題に対処している。
我々は、事前学習した知識を保持できるDIKI(Distributed-Aware Interference-free Knowledge Integration)フレームワークを提案する。
論文 参考訳(メタデータ) (2024-07-07T12:19:37Z) - Efficient Imitation Learning with Conservative World Models [54.52140201148341]
報酬機能のない専門家によるデモンストレーションから政策学習の課題に取り組む。
純粋な強化学習ではなく、微調整問題として模倣学習を再構成する。
論文 参考訳(メタデータ) (2024-05-21T20:53:18Z) - End-to-end Lidar-Driven Reinforcement Learning for Autonomous Racing [0.0]
強化学習(Reinforcement Learning, RL)は、自動化とロボット工学の領域において、変革的なアプローチとして登場した。
本研究は、フィードフォワード生ライダーと速度データのみを用いて、レース環境をナビゲートするRLエージェントを開発し、訓練する。
エージェントのパフォーマンスは、実世界のレースシナリオで実験的に評価される。
論文 参考訳(メタデータ) (2023-09-01T07:03:05Z) - Addressing the issue of stochastic environments and local
decision-making in multi-objective reinforcement learning [0.0]
多目的強化学習(MORL)は、従来の強化学習(RL)に基づく比較的新しい分野である。
この論文は、価値に基づくMORL Q-learningアルゴリズムが環境の最適ポリシーを学習する頻度に影響を与える要因に焦点を当てている。
論文 参考訳(メタデータ) (2022-11-16T04:56:42Z) - Autonomous Reinforcement Learning: Formalism and Benchmarking [106.25788536376007]
人間や動物が行うような現実世界の具体的学習は、連続的で非エポゾディックな世界にある。
RLの一般的なベンチマークタスクはエピソジックであり、試行錯誤によってエージェントに複数の試行を行う環境がリセットされる。
この相違は、擬似環境向けに開発されたRLアルゴリズムを現実世界のプラットフォーム上で実行しようとする場合、大きな課題となる。
論文 参考訳(メタデータ) (2021-12-17T16:28:06Z) - Balancing Value Underestimation and Overestimation with Realistic
Actor-Critic [6.205681604290727]
本稿では,新しいモデルフリーアルゴリズムであるRealistic Actor-Critic(RAC)を提案する。
RACはUniversal Value Function Approximator (UVFA)を使用して、同じニューラルネットワークを持つポリシーファミリを同時に学習する。
我々は,MuJoCoベンチマークでRACを評価し,最も困難なHumanoid環境において,SACと比較して10倍のサンプル効率と25%の性能向上を実現した。
論文 参考訳(メタデータ) (2021-10-19T03:35:01Z) - Persistent Reinforcement Learning via Subgoal Curricula [114.83989499740193]
VaPRL(Value-accelerated Persistent Reinforcement Learning)は、初期状態のカリキュラムを生成する。
VaPRLは、エピソード強化学習と比較して、3桁の精度で必要な介入を減らす。
論文 参考訳(メタデータ) (2021-07-27T16:39:45Z) - Deep RL With Information Constrained Policies: Generalization in
Continuous Control [21.46148507577606]
情報フローに対する自然な制約は, 連続制御タスクにおいて, 人工エージェントに干渉する可能性があることを示す。
CLAC(Capacity-Limited Actor-Critic)アルゴリズムを実装した。
実験の結果、CLACは代替手法と比較して、トレーニング環境と修正テスト環境の一般化に改善をもたらすことがわかった。
論文 参考訳(メタデータ) (2020-10-09T15:42:21Z) - Dynamics Generalization via Information Bottleneck in Deep Reinforcement
Learning [90.93035276307239]
本稿では,RLエージェントのより優れた一般化を実現するために,情報理論正則化目標とアニーリングに基づく最適化手法を提案する。
迷路ナビゲーションからロボットタスクまで、さまざまな領域において、我々のアプローチの極端な一般化の利点を実証する。
この研究は、タスク解決のために冗長な情報を徐々に取り除き、RLの一般化を改善するための原則化された方法を提供する。
論文 参考訳(メタデータ) (2020-08-03T02:24:20Z) - Deep Reinforcement Learning amidst Lifelong Non-Stationarity [67.24635298387624]
政治以外のRLアルゴリズムは、寿命の長い非定常性に対処できることを示す。
提案手法は潜在変数モデルを用いて,現在および過去の経験から環境表現を学習する。
また, 生涯の非定常性を示すシミュレーション環境もいくつか導入し, 環境変化を考慮しないアプローチを著しく上回っていることを実証的に確認した。
論文 参考訳(メタデータ) (2020-06-18T17:34:50Z) - Self-Paced Deep Reinforcement Learning [42.467323141301826]
カリキュラム強化学習(CRL)は、学習を通して調整された一連のタスクに公開することにより、エージェントの学習速度と安定性を向上させる。
実証的な成功にもかかわらず、CRLのオープンな疑問は、手動設計を避けながら、与えられた強化学習(RL)エージェントのカリキュラムを自動的に生成する方法である。
本稿では,カリキュラム生成を推論問題として解釈し,タスク上の分布を段階的に学習し,対象タスクにアプローチすることで解答を提案する。
このアプローチは、エージェントがペースを制御し、しっかりとした理論的動機を持ち、深いRLアルゴリズムと容易に統合できる自動カリキュラム生成につながる。
論文 参考訳(メタデータ) (2020-04-24T15:48:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。