論文の概要: End-to-end Lidar-Driven Reinforcement Learning for Autonomous Racing
- arxiv url: http://arxiv.org/abs/2309.00296v1
- Date: Fri, 1 Sep 2023 07:03:05 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-04 14:09:07.666472
- Title: End-to-end Lidar-Driven Reinforcement Learning for Autonomous Racing
- Title(参考訳): 自動レースにおけるエンドツーエンドライダー駆動強化学習
- Authors: Meraj Mammadov
- Abstract要約: 強化学習(Reinforcement Learning, RL)は、自動化とロボット工学の領域において、変革的なアプローチとして登場した。
本研究は、フィードフォワード生ライダーと速度データのみを用いて、レース環境をナビゲートするRLエージェントを開発し、訓練する。
エージェントのパフォーマンスは、実世界のレースシナリオで実験的に評価される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reinforcement Learning (RL) has emerged as a transformative approach in the
domains of automation and robotics, offering powerful solutions to complex
problems that conventional methods struggle to address. In scenarios where the
problem definitions are elusive and challenging to quantify, learning-based
solutions such as RL become particularly valuable. One instance of such
complexity can be found in the realm of car racing, a dynamic and unpredictable
environment that demands sophisticated decision-making algorithms. This study
focuses on developing and training an RL agent to navigate a racing environment
solely using feedforward raw lidar and velocity data in a simulated context.
The agent's performance, trained in the simulation environment, is then
experimentally evaluated in a real-world racing scenario. This exploration
underlines the feasibility and potential benefits of RL algorithm enhancing
autonomous racing performance, especially in the environments where prior map
information is not available.
- Abstract(参考訳): 強化学習(Reinforcement Learning, RL)は、自動化とロボット工学の分野における変革的なアプローチとして現れ、従来の手法では解決が難しい複雑な問題に対する強力なソリューションを提供する。
問題定義が解明され、定量化が難しいシナリオでは、RLのような学習ベースのソリューションが特に有用になる。
このような複雑さの例の1つは、高度な意思決定アルゴリズムを必要とする動的で予測不能な環境であるカーレースの領域に見ることができる。
本研究では,フィードフォワード生ライダーと速度データのみを用いて,シミュレーション環境でのレース環境をナビゲートするRLエージェントの開発と訓練に焦点をあてる。
シミュレーション環境で訓練されたエージェントのパフォーマンスは、実世界のレースシナリオで実験的に評価される。
この調査は、特に事前地図情報が利用できない環境での自動運転性能を向上させるrlアルゴリズムの実現可能性と潜在的な利点を強調するものである。
関連論文リスト
- Self-Driving Car Racing: Application of Deep Reinforcement Learning [0.0]
このプロジェクトの目的は、OpenAI Gymnasium CarRacing環境でシミュレーションカーを効率的に駆動するAIエージェントを開発することである。
本稿では,DQN(Deep Q-Network)やPPO(Proximal Policy Optimization)などのRLアルゴリズムや,トランスファーラーニングとリカレントニューラルネットワーク(RNN)を組み込んだ新たな適応手法について検討する。
論文 参考訳(メタデータ) (2024-10-30T07:32:25Z) - Autonomous Vehicle Controllers From End-to-End Differentiable Simulation [60.05963742334746]
そこで我々は,AVコントローラのトレーニングにAPG(analytic Policy gradients)アプローチを適用可能なシミュレータを提案し,その設計を行う。
提案するフレームワークは, エージェントがより根底的なポリシーを学ぶのを助けるために, 環境力学の勾配を役立てる, エンド・ツー・エンドの訓練ループに, 微分可能シミュレータを組み込む。
ダイナミクスにおけるパフォーマンスとノイズに対する堅牢性の大幅な改善と、全体としてより直感的なヒューマンライクな処理が見られます。
論文 参考訳(メタデータ) (2024-09-12T11:50:06Z) - Aquatic Navigation: A Challenging Benchmark for Deep Reinforcement Learning [53.3760591018817]
ゲームエンジンとDeep Reinforcement Learningの統合の最近の進歩を利用して,水上ナビゲーションのための新しいベンチマーク環境を提案する。
具体的には、最も広く受け入れられているアルゴリズムの一つであるPPOに着目し、先進的なトレーニング手法を提案する。
実験により,これらの成分をうまく組み合わせることで,有望な結果が得られることが示された。
論文 参考訳(メタデータ) (2024-05-30T23:20:23Z) - Staged Reinforcement Learning for Complex Tasks through Decomposed
Environments [4.883558259729863]
RL問題を実問題に近似する2つの方法について議論する。
交通ジャンクションシミュレーションの文脈において、複雑なタスクを複数のサブタスクに分解できれば、これらのタスクを最初に解くのが有利であることを示す。
多エージェントの観点から、我々は、CTDE(Centralized Training Decentralized Execution)と呼ばれる一般的なパラダイムの下で学んだ経験の活用を活用するトレーニング構造化機構を導入する。
論文 参考訳(メタデータ) (2023-11-05T19:43:23Z) - FastRLAP: A System for Learning High-Speed Driving via Deep RL and
Autonomous Practicing [71.76084256567599]
本稿では、自律型小型RCカーを強化学習(RL)を用いた視覚的観察から積極的に駆動するシステムを提案する。
我々のシステムであるFastRLAP (faster lap)は、人間の介入なしに、シミュレーションや専門家によるデモンストレーションを必要とせず、現実世界で自律的に訓練する。
結果として得られたポリシーは、タイミングブレーキや回転の加速度などの突発的な運転スキルを示し、ロボットの動きを妨げる領域を避け、トレーニングの途中で同様の1対1のインタフェースを使用して人間のドライバーのパフォーマンスにアプローチする。
論文 参考訳(メタデータ) (2023-04-19T17:33:47Z) - Discrete Control in Real-World Driving Environments using Deep
Reinforcement Learning [2.467408627377504]
本研究では,現実の環境をゲーム環境に移行させる,現実の運転環境におけるフレームワーク(知覚,計画,制御)を紹介する。
実環境における離散制御を学習し,実行するために,既存の強化学習(RL)アルゴリズムを多エージェント設定で提案する。
論文 参考訳(メタデータ) (2022-11-29T04:24:03Z) - Accelerated Policy Learning with Parallel Differentiable Simulation [59.665651562534755]
微分可能シミュレータと新しいポリシー学習アルゴリズム(SHAC)を提案する。
本アルゴリズムは,スムーズな批判機能により局所最小化の問題を軽減する。
現状のRLと微分可能なシミュレーションベースアルゴリズムと比較して,サンプル効率と壁面時間を大幅に改善した。
論文 参考訳(メタデータ) (2022-04-14T17:46:26Z) - Autonomous Reinforcement Learning: Formalism and Benchmarking [106.25788536376007]
人間や動物が行うような現実世界の具体的学習は、連続的で非エポゾディックな世界にある。
RLの一般的なベンチマークタスクはエピソジックであり、試行錯誤によってエージェントに複数の試行を行う環境がリセットされる。
この相違は、擬似環境向けに開発されたRLアルゴリズムを現実世界のプラットフォーム上で実行しようとする場合、大きな課題となる。
論文 参考訳(メタデータ) (2021-12-17T16:28:06Z) - Fast Approximate Solutions using Reinforcement Learning for Dynamic
Capacitated Vehicle Routing with Time Windows [3.5232085374661284]
本稿では, CVRP-TWDR (Capacitated Vehicle Routing with Time Windows and Dynamic Routing) の一般クラスに対する, 本質的に並列化, 高速, 近似学習に基づくソリューションを開発する。
艦隊内の車両を分散エージェントとして考えると、強化学習(RL)ベースの適応は動的環境におけるリアルタイムルート形成の鍵となると仮定する。
論文 参考訳(メタデータ) (2021-02-24T06:30:16Z) - Deep Reinforcement Learning amidst Lifelong Non-Stationarity [67.24635298387624]
政治以外のRLアルゴリズムは、寿命の長い非定常性に対処できることを示す。
提案手法は潜在変数モデルを用いて,現在および過去の経験から環境表現を学習する。
また, 生涯の非定常性を示すシミュレーション環境もいくつか導入し, 環境変化を考慮しないアプローチを著しく上回っていることを実証的に確認した。
論文 参考訳(メタデータ) (2020-06-18T17:34:50Z) - Deep Reinforcement Learning for Autonomous Driving: A Survey [0.3694429692322631]
このレビューは、深層強化学習(DRL)アルゴリズムを要約し、自動走行タスクの分類を提供する。
また、振る舞いのクローン化、模倣学習、逆強化学習など、古典的なRLアルゴリズムとは無関係な隣接領域についても記述する。
トレーニングエージェントにおけるシミュレータの役割,RLにおける既存ソリューションの検証,テスト,堅牢化手法について論じる。
論文 参考訳(メタデータ) (2020-02-02T18:21:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。