論文の概要: Self-Paced Deep Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2004.11812v5
- Date: Fri, 23 Oct 2020 09:42:00 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-10 02:50:30.288507
- Title: Self-Paced Deep Reinforcement Learning
- Title(参考訳): 自己ペース深層強化学習
- Authors: Pascal Klink, Carlo D'Eramo, Jan Peters, Joni Pajarinen
- Abstract要約: カリキュラム強化学習(CRL)は、学習を通して調整された一連のタスクに公開することにより、エージェントの学習速度と安定性を向上させる。
実証的な成功にもかかわらず、CRLのオープンな疑問は、手動設計を避けながら、与えられた強化学習(RL)エージェントのカリキュラムを自動的に生成する方法である。
本稿では,カリキュラム生成を推論問題として解釈し,タスク上の分布を段階的に学習し,対象タスクにアプローチすることで解答を提案する。
このアプローチは、エージェントがペースを制御し、しっかりとした理論的動機を持ち、深いRLアルゴリズムと容易に統合できる自動カリキュラム生成につながる。
- 参考スコア(独自算出の注目度): 42.467323141301826
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Curriculum reinforcement learning (CRL) improves the learning speed and
stability of an agent by exposing it to a tailored series of tasks throughout
learning. Despite empirical successes, an open question in CRL is how to
automatically generate a curriculum for a given reinforcement learning (RL)
agent, avoiding manual design. In this paper, we propose an answer by
interpreting the curriculum generation as an inference problem, where
distributions over tasks are progressively learned to approach the target task.
This approach leads to an automatic curriculum generation, whose pace is
controlled by the agent, with solid theoretical motivation and easily
integrated with deep RL algorithms. In the conducted experiments, the curricula
generated with the proposed algorithm significantly improve learning
performance across several environments and deep RL algorithms, matching or
outperforming state-of-the-art existing CRL algorithms.
- Abstract(参考訳): カリキュラム強化学習(CRL)は、学習を通して調整された一連のタスクに公開することにより、エージェントの学習速度と安定性を向上させる。
実証的な成功にもかかわらず、CRLのオープンな疑問は、手動設計を避けながら、与えられた強化学習(RL)エージェントのカリキュラムを自動的に生成する方法である。
本稿では,カリキュラム生成を推論問題として解釈し,タスク上の分布を段階的に学習して対象タスクにアプローチする解を提案する。
このアプローチは、エージェントがペースを制御し、しっかりとした理論的動機を持ち、深いRLアルゴリズムと容易に統合できる自動カリキュラム生成につながる。
実験では,提案手法を用いて生成したカリキュラムは,既存のcrlアルゴリズムとマッチングあるいは性能を上回って,複数の環境と深いrlアルゴリズムの学習性能を大幅に向上させた。
関連論文リスト
- Tracking Control for a Spherical Pendulum via Curriculum Reinforcement
Learning [27.73555826776087]
強化学習(RL)は、データから純粋に非自明なロボット制御法を学習することを可能にする。
本稿では,大規模並列化シミュレーションに基づいてRLでキュリキュラを自動構築するアルゴリズムを提案する。
非線形トラッキングタスクに対する状態推定と制御を共同で学習するカリキュラムRLの可能性を示す。
論文 参考訳(メタデータ) (2023-09-25T12:48:47Z) - On the Benefit of Optimal Transport for Curriculum Reinforcement Learning [32.59609255906321]
タスク分布間のキュリキュラをフレーミングすることに焦点を当てる。
我々は,カリキュラムの生成を制約付き最適輸送問題とする。
ベンチマークでは、既存のCRL法により、このカリキュラム生成方法が改善できることが示されている。
論文 参考訳(メタデータ) (2023-09-25T12:31:37Z) - Reward-Machine-Guided, Self-Paced Reinforcement Learning [30.42334205249944]
報奨機による自己評価強化学習アルゴリズムを開発した。
提案アルゴリズムは,既存のベースラインが意味のある進歩を達成できない場合でも,最適な動作を確実に達成する。
また、カリキュラムの長さを減らし、カリキュラム生成プロセスのばらつきを最大4分の1まで減らします。
論文 参考訳(メタデータ) (2023-05-25T22:13:37Z) - MARLIN: Soft Actor-Critic based Reinforcement Learning for Congestion
Control in Real Networks [63.24965775030673]
そこで本研究では,汎用的な渋滞制御(CC)アルゴリズムを設計するための新しい強化学習(RL)手法を提案する。
我々の解であるMARLINは、Soft Actor-Criticアルゴリズムを用いてエントロピーとリターンの両方を最大化する。
我々は,MARLINを実ネットワーク上で訓練し,実ミスマッチを克服した。
論文 参考訳(メタデータ) (2023-02-02T18:27:20Z) - CLUTR: Curriculum Learning via Unsupervised Task Representation Learning [130.79246770546413]
CLUTRは、タスク表現とカリキュラム学習を2段階最適化に分離する、新しいカリキュラム学習アルゴリズムである。
CLUTRは、CarRacingとナビゲーション環境における一般化とサンプル効率の観点から、原則的かつ一般的なUED手法であるPAIREDよりも優れていることを示す。
論文 参考訳(メタデータ) (2022-10-19T01:45:29Z) - Jump-Start Reinforcement Learning [68.82380421479675]
本稿では、オフラインデータやデモ、あるいは既存のポリシーを使ってRLポリシーを初期化するメタアルゴリズムを提案する。
特に,タスク解決に2つのポリシーを利用するアルゴリズムであるJump-Start Reinforcement Learning (JSRL)を提案する。
実験により、JSRLは既存の模倣と強化学習アルゴリズムを大幅に上回っていることを示す。
論文 参考訳(メタデータ) (2022-04-05T17:25:22Z) - Text Generation with Efficient (Soft) Q-Learning [91.47743595382758]
強化学習(RL)は、任意のタスクメトリクスを報酬としてプラグインすることで、より柔軟なソリューションを提供する。
ソフトQ-ラーニングの観点からテキスト生成のための新しいRL式を導入する。
雑音/負の例から学習し、敵攻撃、即時生成など、幅広いタスクにアプローチを適用する。
論文 参考訳(メタデータ) (2021-06-14T18:48:40Z) - Combining Pessimism with Optimism for Robust and Efficient Model-Based
Deep Reinforcement Learning [56.17667147101263]
実世界のタスクでは、強化学習エージェントはトレーニング中に存在しない状況に遭遇する。
信頼性を確保するため、RLエージェントは最悪の状況に対して堅牢性を示す必要がある。
本稿では,Robust Hallucinated Upper-Confidence RL (RH-UCRL)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-03-18T16:50:17Z) - A Probabilistic Interpretation of Self-Paced Learning with Applications
to Reinforcement Learning [30.69129405392038]
強化学習における自動カリキュラム生成のアプローチを提案する。
我々は、よく知られた自己評価学習パラダイムを、トレーニングタスクよりも分布を誘導するものとして定式化する。
実験により、この誘導分布のトレーニングは、RLアルゴリズム間の局所最適性の低下を避けるのに役立つことが示された。
論文 参考訳(メタデータ) (2021-02-25T21:06:56Z) - Deep Reinforcement Learning for Autonomous Driving: A Survey [0.3694429692322631]
このレビューは、深層強化学習(DRL)アルゴリズムを要約し、自動走行タスクの分類を提供する。
また、振る舞いのクローン化、模倣学習、逆強化学習など、古典的なRLアルゴリズムとは無関係な隣接領域についても記述する。
トレーニングエージェントにおけるシミュレータの役割,RLにおける既存ソリューションの検証,テスト,堅牢化手法について論じる。
論文 参考訳(メタデータ) (2020-02-02T18:21:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。