論文の概要: Validation of Simulation-Based Testing: Bypassing Domain Shift with
Label-to-Image Synthesis
- arxiv url: http://arxiv.org/abs/2106.05549v1
- Date: Thu, 10 Jun 2021 07:23:58 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-11 14:32:15.907109
- Title: Validation of Simulation-Based Testing: Bypassing Domain Shift with
Label-to-Image Synthesis
- Title(参考訳): シミュレーションベーステストの検証:ラベル-画像合成によるドメインシフトの回避
- Authors: Julia Rosenzweig, Eduardo Brito, Hans-Ulrich Kobialka, Maram Akila,
Nico M. Schmidt, Peter Schlicht, Jan David Schneider, Fabian H\"uger,
Matthias Rottmann, Sebastian Houben, Tim Wirtz
- Abstract要約: 本稿では,異なる転送可能性尺度とともに生成ラベル-画像合成モデルからなる新しいフレームワークを提案する。
シーンを駆動するセマンティックセグメンテーションタスクにおいて,本手法を実証的に検証する。
後者は実生活と合成テストを区別できるが、前者は自動車と歩行者の両方で0.7の驚くほど強い相関関係を観察する。
- 参考スコア(独自算出の注目度): 9.531148049378672
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many machine learning applications can benefit from simulated data for
systematic validation - in particular if real-life data is difficult to obtain
or annotate. However, since simulations are prone to domain shift w.r.t.
real-life data, it is crucial to verify the transferability of the obtained
results. We propose a novel framework consisting of a generative label-to-image
synthesis model together with different transferability measures to inspect to
what extent we can transfer testing results of semantic segmentation models
from synthetic data to equivalent real-life data. With slight modifications,
our approach is extendable to, e.g., general multi-class classification tasks.
Grounded on the transferability analysis, our approach additionally allows for
extensive testing by incorporating controlled simulations. We validate our
approach empirically on a semantic segmentation task on driving scenes.
Transferability is tested using correlation analysis of IoU and a learned
discriminator. Although the latter can distinguish between real-life and
synthetic tests, in the former we observe surprisingly strong correlations of
0.7 for both cars and pedestrians.
- Abstract(参考訳): 多くの機械学習アプリケーションは、シミュレートされたデータを体系的な検証に役立てることができる。
しかし、シミュレーションはドメインシフトw.r.t になりがちである。
実生活データでは、得られた結果の転送可能性を検証することが重要である。
本稿では,合成データから等価な実生活データへ意味セグメンテーションモデルのテスト結果をどの程度転送できるかを調べるために,生成ラベルから画像への合成モデルと異なる転送可能性尺度を組み合わせた新しい枠組みを提案する。
若干の変更を加えると、我々のアプローチは一般的な多クラス分類タスクに拡張可能である。
トランスファービリティ解析に基づくアプローチでは,制御されたシミュレーションを組み込んだ広範囲なテストも可能である。
運転シーンにおける意味セグメンテーションタスクを経験的に検証した。
IoUと学習した識別器の相関解析を用いてトランスファービリティを検証した。
後者は実生活と合成テストを区別できるが、前者は自動車と歩行者の両方で0.7の驚くほど強い相関関係を観察する。
関連論文リスト
- Exploring Generative AI for Sim2Real in Driving Data Synthesis [6.769182994217369]
ドライビングシミュレータは、対応するアノテーションで様々なドライビングシナリオを自動的に生成するソリューションを提供するが、シミュレーションとリアリティ(Sim2Real)ドメインギャップは依然として課題である。
本稿では,現実的なデータセット作成のためのブリッジとして,運転シミュレータからのセマンティックラベルマップを活用するために,3つの異なる生成AI手法を適用した。
実験の結果,手動のアノテートラベルが提供されると,GANベースの手法は高品質な画像を生成するには適しているが,ControlNetは,シミュレータ生成ラベルを使用すると,より少ないアーティファクトとより構造的忠実度を持つ合成データセットを生成することがわかった。
論文 参考訳(メタデータ) (2024-04-14T01:23:19Z) - Reliability in Semantic Segmentation: Can We Use Synthetic Data? [69.28268603137546]
セマンティックセグメンテーションモデルの現実的信頼性を総合的に評価するために、合成データを具体的に生成する方法を初めて示す。
この合成データは、事前訓練されたセグメンタの堅牢性を評価するために使用される。
セグメンタのキャリブレーションとOOD検出能力を向上するために,我々のアプローチをどのように活用できるかを実証する。
論文 参考訳(メタデータ) (2023-12-14T18:56:07Z) - ParGANDA: Making Synthetic Pedestrians A Reality For Object Detection [2.7648976108201815]
本稿では,GAN(Generative Adversarial Network)を用いて,実データと合成データのギャップを埋めることを提案する。
我々のアプローチは、視覚的に可視なサンプルを生成するだけでなく、実際のドメインのラベルも必要としない。
論文 参考訳(メタデータ) (2023-07-21T05:26:32Z) - HaDR: Applying Domain Randomization for Generating Synthetic Multimodal
Dataset for Hand Instance Segmentation in Cluttered Industrial Environments [0.0]
本研究では、ドメインランダム化を用いて、マルチモーダルインスタンスセグメンテーションモデルのトレーニングのための合成RGB-Dデータセットを生成する。
提案手法により,既存の最先端データセットでトレーニングしたモデルよりも優れた性能が得られることを示す。
論文 参考訳(メタデータ) (2023-04-12T13:02:08Z) - Revisiting the Evaluation of Image Synthesis with GANs [55.72247435112475]
本研究では, 合成性能の評価に関する実証的研究を行い, 生成モデルの代表としてGAN(Generative Adversarial Network)を用いた。
特に、表現空間におけるデータポイントの表現方法、選択したサンプルを用いた公平距離の計算方法、各集合から使用可能なインスタンス数など、さまざまな要素の詳細な分析を行う。
論文 参考訳(メタデータ) (2023-04-04T17:54:32Z) - A New Benchmark: On the Utility of Synthetic Data with Blender for Bare
Supervised Learning and Downstream Domain Adaptation [42.2398858786125]
コンピュータビジョンにおけるディープラーニングは、大規模ラベル付きトレーニングデータの価格で大きな成功を収めた。
制御不能なデータ収集プロセスは、望ましくない重複が存在する可能性のある非IIDトレーニングおよびテストデータを生成する。
これを回避するために、ドメインランダム化による3Dレンダリングによる合成データを生成する方法がある。
論文 参考訳(メタデータ) (2023-03-16T09:03:52Z) - One-Shot Domain Adaptive and Generalizable Semantic Segmentation with
Class-Aware Cross-Domain Transformers [96.51828911883456]
セマンティックセグメンテーションのための教師なしのsim-to-realドメイン適応(UDA)は、シミュレーションデータに基づいて訓練されたモデルの実世界のテスト性能を改善することを目的としている。
従来のUDAは、適応のためのトレーニング中に利用可能なラベルのない実世界のサンプルが豊富にあると仮定することが多い。
実世界のデータサンプルが1つしか利用できない,一発の教師なしシム・トゥ・リアル・ドメイン適応(OSUDA)と一般化問題について検討する。
論文 参考訳(メタデータ) (2022-12-14T15:54:15Z) - Differentiable Agent-based Epidemiology [71.81552021144589]
GradABM(GradABM)は、エージェントベースのモデリングのためのスケーラブルで微分可能な設計で、勾配に基づく学習と自動微分が可能である。
GradABMは、コモディティハードウェア上で数秒で数百万の人口をシミュレートし、ディープニューラルネットワークと統合し、異種データソースを取り込みます。
論文 参考訳(メタデータ) (2022-07-20T07:32:02Z) - A Scaling Law for Synthetic-to-Real Transfer: A Measure of Pre-Training [52.93808218720784]
合成から現実への変換学習は,実タスクのための合成画像と接地真実アノテーションを用いた事前学習を行うフレームワークである。
合成画像はデータの不足を克服するが、事前訓練されたモデルで微調整性能がどのようにスケールするかは定かではない。
我々は、合成事前学習データの様々なタスク、モデル、複雑さにおける学習曲線を一貫して記述する、単純で一般的なスケーリング法則を観察する。
論文 参考訳(メタデータ) (2021-08-25T02:29:28Z) - Learning summary features of time series for likelihood free inference [93.08098361687722]
時系列データから要約機能を自動的に学習するためのデータ駆動型戦略を提案する。
以上の結果から,データから要約的特徴を学習することで,手作りの値に基づいてLFI手法よりも優れる可能性が示唆された。
論文 参考訳(メタデータ) (2020-12-04T19:21:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。