Quantum Fokker-Planck Dynamics
- URL: http://arxiv.org/abs/2106.05718v3
- Date: Thu, 14 Oct 2021 17:33:14 GMT
- Title: Quantum Fokker-Planck Dynamics
- Authors: Louis Labuschagne and W. Adam Majewski
- Abstract summary: This paper aims to obtain a quantum counterpart of Fokker-Planck dynamics.
Within this framework we present a quantization of the generalized Laplace operator.
We then construct and examine the behaviour of the corresponding Markov semigroups.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Fokker-Planck equation is a partial differential equation which is a key
ingredient in many models in physics. This paper aims to obtain a quantum
counterpart of Fokker-Planck dynamics, as a means to describing quantum
Fokker-Planck dynamics. Given that relevant models relate to the description of
large systems, the quantization of the Fokker-Planck equation should be done in
a manner that respects this fact, and is therefore carried out within the
setting of non-commutative analysis based on general von Neumann algebras.
Within this framework we present a quantization of the generalized Laplace
operator, and then go on to incorporate a potential term conditioned to
noncommutative analysis. In closing we then construct and examine the
asymptotic behaviour of the corresponding Markov semigroups. We also present a
noncommutative Csiszar-Kullback inequality formulated in terms of a notion of
relative entropy, and show that for more general systems, good behaviour with
respect to this notion of entropy ensures similar asymptotic behaviour of the
relevant dynamics.
Related papers
- Markovian dynamics for a quantum/classical system and quantum trajectories [0.0]
We develop a general approach to the dynamics of quantum/classical systems.
An important feature is that, if the interaction allows for a flow of information from the quantum component to the classical one, necessarily the dynamics is dissipative.
arXiv Detail & Related papers (2024-03-24T08:26:54Z) - Predictive complexity of quantum subsystems [0.0]
We define predictive states and predictive complexity for quantum systems composed of distinct subsystems.
Predictions are formed by equivalence classes of state vectors in the exterior Hilbert space.
It can also serve as a local order parameter that can distinguish long and short range entanglement.
arXiv Detail & Related papers (2023-09-26T18:58:56Z) - Quantum stochastic trajectories for particles and fields based on
positive P-representation [0.0]
We introduce a phase-space description based on the positive P representation for bosonic fields interacting with a system of quantum emitters.
The formalism is applicable to collective light-matter interactions and open quantum systems with decoherence.
A potential future application is the quantum mechanical description of collective spontaneous emission of an incoherently pumped ensemble of atoms.
arXiv Detail & Related papers (2023-06-30T08:38:47Z) - Distorted stability pattern and chaotic features for quantized
prey-predator-like dynamics [0.0]
Non-equilibrium and instability features of prey-predator-like systems are investigated in the framework of the Weyl-Wigner quantum mechanics.
From the non-Liouvillian pattern driven by the associated Wigner currents, hyperbolic equilibrium and stability parameters are shown to be affected by quantum distortions.
arXiv Detail & Related papers (2023-03-16T19:55:36Z) - Quantum stochastic thermodynamics: A semiclassical theory in phase space [0.0]
A formalism for quantum many-body systems is proposed through a semiclassical treatment in phase space.
We use a Fokker-Planck equation as the dynamics at the mesoscopic level.
We define thermodynamic quantities based on the trajectories of the phase-space distribution.
arXiv Detail & Related papers (2023-03-10T14:12:14Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Entanglement dynamics of spins using a few complex trajectories [77.34726150561087]
We consider two spins initially prepared in a product of coherent states and study their entanglement dynamics.
We adopt an approach that allowed the derivation of a semiclassical formula for the linear entropy of the reduced density operator.
arXiv Detail & Related papers (2021-08-13T01:44:24Z) - From geometry to coherent dissipative dynamics in quantum mechanics [68.8204255655161]
We work out the case of finite-level systems, for which it is shown by means of the corresponding contact master equation.
We describe quantum decays in a 2-level system as coherent and continuous processes.
arXiv Detail & Related papers (2021-07-29T18:27:38Z) - Bernstein-Greene-Kruskal approach for the quantum Vlasov equation [91.3755431537592]
The one-dimensional stationary quantum Vlasov equation is analyzed using the energy as one of the dynamical variables.
In the semiclassical case where quantum tunneling effects are small, an infinite series solution is developed.
arXiv Detail & Related papers (2021-02-18T20:55:04Z) - From stochastic spin chains to quantum Kardar-Parisi-Zhang dynamics [68.8204255655161]
We introduce the asymmetric extension of the Quantum Symmetric Simple Exclusion Process.
We show that the time-integrated current of fermions defines a height field which exhibits a quantum non-linear dynamics.
arXiv Detail & Related papers (2020-01-13T14:30:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.