論文の概要: Adversarial Graph Augmentation to Improve Graph Contrastive Learning
- arxiv url: http://arxiv.org/abs/2106.05819v2
- Date: Fri, 11 Jun 2021 18:23:07 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-20 05:32:02.406100
- Title: Adversarial Graph Augmentation to Improve Graph Contrastive Learning
- Title(参考訳): グラフコントラスト学習改善のための逆グラフ拡張
- Authors: Susheel Suresh, Pan Li, Cong Hao, Jennifer Neville
- Abstract要約: 本稿では,GNNがトレーニング中に冗長な情報を捕捉することを避けるために,AD-GCL(adversarial-GCL)と呼ばれる新しい原理を提案する。
我々は、AD-GCLを最先端のGCL法と比較し、教師なしで最大$14%、転送で$6%、半教師なしの学習環境で$3%の性能向上を達成した。
- 参考スコア(独自算出の注目度): 21.54343383921459
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Self-supervised learning of graph neural networks (GNN) is in great need
because of the widespread label scarcity issue in real-world graph/network
data. Graph contrastive learning (GCL), by training GNNs to maximize the
correspondence between the representations of the same graph in its different
augmented forms, may yield robust and transferable GNNs even without using
labels. However, GNNs trained by traditional GCL often risk capturing redundant
graph features and thus may be brittle and provide sub-par performance in
downstream tasks. Here, we propose a novel principle, termed adversarial-GCL
(AD-GCL), which enables GNNs to avoid capturing redundant information during
the training by optimizing adversarial graph augmentation strategies used in
GCL. We pair AD-GCL with theoretical explanations and design a practical
instantiation based on trainable edge-dropping graph augmentation. We
experimentally validate AD-GCL by comparing with the state-of-the-art GCL
methods and achieve performance gains of up-to $14\%$ in unsupervised, $6\%$ in
transfer, and $3\%$ in semi-supervised learning settings overall with 18
different benchmark datasets for the tasks of molecule property regression and
classification, and social network classification.
- Abstract(参考訳): グラフニューラルネットワーク(gnn)の自己教師付き学習は,実世界のグラフ/ネットワークデータにおけるラベル不足の問題から,非常に必要とされている。
グラフコントラスト学習(GCL)は、GNNを訓練して、異なる拡張形式における同じグラフの表現間の対応を最大化することにより、ラベルを使わずに堅牢で転送可能なGNNが得られる。
しかし、従来のGCLによって訓練されたGNNは、冗長なグラフ特徴をキャプチャするリスクがしばしばあるため、不安定であり、下流タスクでサブパーのパフォーマンスを提供する。
本稿では,GCLにおける逆グラフ拡張戦略を最適化することにより,GNNがトレーニング中に冗長な情報を捕捉することを回避できる新しい原理であるAD-GCLを提案する。
ad-gclを理論的な説明と組み合わせ、訓練可能なエッジドロップグラフ拡張に基づく実用的なインスタンス化を設計する。
我々は、AD-GCL法を最先端のGCL法と比較し、分子特性の回帰と分類、およびソーシャルネットワーク分類のタスクに関する18種類のベンチマークデータセットを用いて、教師なし学習における最大14\%、転送時の6\%、および半教師付き学習環境における3\%のパフォーマンス向上を実験的に検証した。
関連論文リスト
- GRE^2-MDCL: Graph Representation Embedding Enhanced via Multidimensional Contrastive Learning [0.0]
グラフ表現学習は、ノードをベクトル表現にマッピングする際にグラフトポロジを保存する強力なツールとして登場した。
現在のグラフニューラルネットワークモデルは、広範なラベル付きデータを必要とするという課題に直面している。
多次元コントラスト学習によるグラフ表現埋め込みを提案する。
論文 参考訳(メタデータ) (2024-09-12T03:09:05Z) - Graph Classification via Reference Distribution Learning: Theory and Practice [24.74871206083017]
グラフ参照分布学習(GRDL, Graph Reference Distribution Learning)は, グラフの効率的な分類法である。
GRDLはGNN層によって与えられるグラフの潜在ノード埋め込みを離散分布として扱い、グローバルプールなしで直接分類できる。
中規模および大規模グラフデータセットの実験は、GRDLが最先端よりも優れていることを示している。
論文 参考訳(メタデータ) (2024-08-21T06:42:22Z) - Low-Rank Graph Contrastive Learning for Node Classification [10.520101507424577]
グラフニューラルネットワーク(GNN)はノード表現の学習に広く使われており、ノード分類などの様々なタスクにおいて優れた性能を示している。
我々は,Low-Rank Graph Contrastive Learning (LR-GCL) という,新規で堅牢なGNNエンコーダを提案する。
論文 参考訳(メタデータ) (2024-02-14T22:15:37Z) - Learning to Reweight for Graph Neural Network [63.978102332612906]
グラフニューラルネットワーク(GNN)は、グラフタスクに対して有望な結果を示す。
既存のGNNの一般化能力は、テストとトレーニンググラフデータの間に分散シフトが存在する場合に低下する。
本稿では,分布外一般化能力を大幅に向上させる非線形グラフデコリレーション法を提案する。
論文 参考訳(メタデータ) (2023-12-19T12:25:10Z) - T-GAE: Transferable Graph Autoencoder for Network Alignment [79.89704126746204]
T-GAEはグラフオートエンコーダフレームワークで、GNNの転送性と安定性を活用して、再トレーニングなしに効率的なネットワークアライメントを実現する。
実験の結果、T-GAEは最先端の最適化手法と最高のGNN手法を最大38.7%、50.8%で上回っていることがわかった。
論文 参考訳(メタデータ) (2023-10-05T02:58:29Z) - Graph Contrastive Learning with Generative Adversarial Network [35.564028359355596]
グラフ生成逆数ネットワーク(GAN)はグラフコントラスト学習(GCL)のためのビューの分布を学習する
本稿では,グラフ表現学習のためのジェネレーティブ・コントラスト学習ネットワークであるGACNを提案する。
GACNはGCLの高品質な拡張ビューを生成することができ、12の最先端のベースライン手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-01T13:28:24Z) - Adversarial Learning Data Augmentation for Graph Contrastive Learning in
Recommendation [56.10351068286499]
グラフコントラスト学習のための学習可能なデータ拡張法(LDA-GCL)を提案する。
提案手法は,InfoMin と InfoMax の原則に従うデータ強化学習とグラフコントラスト学習を含む。
本手法は,データ拡張とユーザやアイテムの効果的な表現を学習するために,対向損失関数を最適化する。
論文 参考訳(メタデータ) (2023-02-05T06:55:51Z) - Graph Soft-Contrastive Learning via Neighborhood Ranking [19.241089079154044]
グラフコントラスト学習(GCL)は,グラフ自己教師型学習の領域において,有望なアプローチとして登場した。
グラフソフトコントラスト学習(GSCL)という新しいパラダイムを提案する。
GSCLは地域ランキングを通じてGCLを促進するため、全く同様のペアを特定する必要がなくなる。
論文 参考訳(メタデータ) (2022-09-28T09:52:15Z) - MentorGNN: Deriving Curriculum for Pre-Training GNNs [61.97574489259085]
本稿では,グラフ間のGNNの事前学習プロセスの監視を目的とした,MentorGNNというエンドツーエンドモデルを提案する。
我々は、事前学習したGNNの一般化誤差に自然かつ解釈可能な上限を導出することにより、関係データ(グラフ)に対するドメイン適応の問題に新たな光を当てた。
論文 参考訳(メタデータ) (2022-08-21T15:12:08Z) - A Unified Lottery Ticket Hypothesis for Graph Neural Networks [82.31087406264437]
本稿では,グラフ隣接行列とモデルの重み付けを同時に行う統一GNNスペーシフィケーション(UGS)フレームワークを提案する。
グラフ宝くじ(GLT)をコアサブデータセットとスパースサブネットワークのペアとして定義することにより、人気のある宝くじチケット仮説を初めてGNNsにさらに一般化します。
論文 参考訳(メタデータ) (2021-02-12T21:52:43Z) - Graph Contrastive Learning with Augmentations [109.23158429991298]
グラフデータの教師なし表現を学習するためのグラフコントラスト学習(GraphCL)フレームワークを提案する。
我々のフレームワークは、最先端の手法と比較して、類似またはより良い一般化可能性、転送可能性、堅牢性のグラフ表現を作成できることを示す。
論文 参考訳(メタデータ) (2020-10-22T20:13:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。