論文の概要: A Template-guided Hybrid Pointer Network for
Knowledge-basedTask-oriented Dialogue Systems
- arxiv url: http://arxiv.org/abs/2106.05830v1
- Date: Thu, 10 Jun 2021 15:49:26 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-11 18:30:39.197061
- Title: A Template-guided Hybrid Pointer Network for
Knowledge-basedTask-oriented Dialogue Systems
- Title(参考訳): 知識ベースタスク指向対話システムのためのテンプレート誘導型ハイブリッドポインタネットワーク
- Authors: Dingmin Wang, Ziyao Chen, Wanwei He, Li Zhong, Yunzhe Tao, Min Yang
- Abstract要約: 本稿では,知識に基づくタスク指向対話システムのためのテンプレート誘導型ハイブリッドポインタネットワークを提案する。
本研究では,ゲーティング機構を備えたメモリポインタネットワークモデルを設計し,検索した回答と接地トラス応答とのセマンティックな相関関係をフル活用する。
- 参考スコア(独自算出の注目度): 15.654119998970499
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Most existing neural network based task-oriented dialogue systems follow
encoder-decoder paradigm, where the decoder purely depends on the source texts
to generate a sequence of words, usually suffering from instability and poor
readability. Inspired by the traditional template-based generation approaches,
we propose a template-guided hybrid pointer network for the knowledge-based
task-oriented dialogue system, which retrieves several potentially relevant
answers from a pre-constructed domain-specific conversational repository as
guidance answers, and incorporates the guidance answers into both the encoding
and decoding processes. Specifically, we design a memory pointer network model
with a gating mechanism to fully exploit the semantic correlation between the
retrieved answers and the ground-truth response. We evaluate our model on four
widely used task-oriented datasets, including one simulated and three manually
created datasets. The experimental results demonstrate that the proposed model
achieves significantly better performance than the state-of-the-art methods
over different automatic evaluation metrics.
- Abstract(参考訳): 既存のニューラルネットワークベースのタスク指向対話システムは、エンコーダ-デコーダパラダイムに従っており、デコーダは純粋にソーステキストに依存して、不安定で可読性の悪い単語列を生成する。
従来のテンプレート・ベース・ジェネレーション・アプローチにインスパイアされた,知識に基づくタスク指向対話システムのためのテンプレート誘導型ハイブリッド・ポインター・ネットワークを提案する。
具体的には,ゲッティング機構を備えたメモリポインタネットワークモデルの設計を行い,得られた回答と接地応答とのセマンティック相関を十分に活用する。
4つのタスク指向データセットについて評価を行い,1つのシミュレーションデータセットと3つの手動生成データセットについて検討した。
実験の結果, 提案手法は, 異なる自動評価指標に対して, 最先端手法よりも有意に優れた性能が得られることがわかった。
関連論文リスト
- UniMS-RAG: A Unified Multi-source Retrieval-Augmented Generation for Personalized Dialogue Systems [43.266153244137215]
大規模言語モデル(LLM)は多くの自然言語理解および生成タスクにおいて例外的な機能を示している。
我々は、パーソナライズされた応答を3つのサブタスク(知識ソース選択、知識検索、応答生成)に分解する。
統一多ソース検索拡張生成システム(UniMS-RAG)を提案する。
論文 参考訳(メタデータ) (2024-01-24T06:50:20Z) - Improved Contextual Recognition In Automatic Speech Recognition Systems
By Semantic Lattice Rescoring [4.819085609772069]
本稿では,意味的格子処理によるASRシステム内における文脈認識の高度化のための新しい手法を提案する。
提案手法は,隠れマルコフモデルとガウス混合モデル(HMM-GMM)とディープニューラルネットワーク(DNN)モデルを用いて,精度を向上する。
本稿では,実験分析によるLibriSpeechデータセット上でのフレームワークの有効性を示す。
論文 参考訳(メタデータ) (2023-10-14T23:16:05Z) - Retrieval-Generation Alignment for End-to-End Task-Oriented Dialogue
System [40.33178881317882]
本稿では、応答生成からの信号を利用して、知覚的レトリバーの学習に最大限の限界確率を適用することを提案する。
本稿では,T5とChatGPTをバックボーンモデルとして用いた3つのタスク指向対話データセットについて検討する。
論文 参考訳(メタデータ) (2023-10-13T06:03:47Z) - Diverse and Faithful Knowledge-Grounded Dialogue Generation via
Sequential Posterior Inference [82.28542500317445]
本稿では,知識の選択と対話生成が可能な,逐次後推論(Sequential Posterior Inference, SPI)と呼ばれるエンドツーエンド学習フレームワークを提案する。
他の方法とは異なり、SPIは推論ネットワークを必要とせず、後部分布の単純な幾何学を仮定する。
論文 参考訳(メタデータ) (2023-06-01T21:23:13Z) - Using Textual Interface to Align External Knowledge for End-to-End
Task-Oriented Dialogue Systems [53.38517204698343]
本稿では,外部知識の整合化と冗長なプロセスの排除にテキストインタフェースを用いた新しいパラダイムを提案する。
我々は、MultiWOZ-Remakeを用いて、MultiWOZデータベース用に構築されたインタラクティブテキストインタフェースを含む、我々のパラダイムを実演する。
論文 参考訳(メタデータ) (2023-05-23T05:48:21Z) - Mixtures of Deep Neural Experts for Automated Speech Scoring [11.860560781894458]
本論文は,言語学習者の音声応答からテストプロンプトに対する第二言語能力の自動評価の課題に対処する。
本手法は,(1)音声対話のテキスト書き起こしを自動生成する音声認識システム,(2)テキスト書き起こしを習熟クラスに分類する深層学習者に基づく複数分類システム,の2つの異なるモジュールに依存している。
論文 参考訳(メタデータ) (2021-06-23T15:44:50Z) - Keyphrase Extraction with Dynamic Graph Convolutional Networks and
Diversified Inference [50.768682650658384]
キーワード抽出(KE)は、ある文書でカバーされている概念やトピックを正確に表現するフレーズの集合を要約することを目的としている。
最近のシークエンス・ツー・シークエンス(Seq2Seq)ベースの生成フレームワークはKEタスクで広く使われ、様々なベンチマークで競合性能を得た。
本稿では,この2つの問題を同時に解くために,動的グラフ畳み込みネットワーク(DGCN)を採用することを提案する。
論文 参考訳(メタデータ) (2020-10-24T08:11:23Z) - Enhancing Dialogue Generation via Multi-Level Contrastive Learning [57.005432249952406]
質問に対する応答のきめ細かい品質をモデル化するマルチレベルコントラスト学習パラダイムを提案する。
Rank-aware (RC) ネットワークはマルチレベルコントラスト最適化の目的を構築するために設計されている。
本研究では,知識推論(KI)コンポーネントを構築し,学習中の参照からキーワードの知識を抽出し,そのような情報を活用して情報的単語の生成を促す。
論文 参考訳(メタデータ) (2020-09-19T02:41:04Z) - Learning an Effective Context-Response Matching Model with
Self-Supervised Tasks for Retrieval-based Dialogues [88.73739515457116]
我々は,次のセッション予測,発話復元,不整合検出,一貫性判定を含む4つの自己教師型タスクを導入する。
我々はPLMに基づく応答選択モデルとこれらの補助タスクをマルチタスク方式で共同で訓練する。
実験結果から,提案した補助的自己教師型タスクは,多ターン応答選択において大きな改善をもたらすことが示された。
論文 参考訳(メタデータ) (2020-09-14T08:44:46Z) - Diversifying Task-oriented Dialogue Response Generation with Prototype
Guided Paraphrasing [52.71007876803418]
タスク指向対話システム(TDS)における既存の対話応答生成(DRG)方法は、テンプレートベースとコーパスベースという2つのカテゴリに分類される。
我々はP2-Netと呼ばれるプロトタイプベースのパラフレーズニューラルネットワークを提案し、精度と多様性の両面で応答の質を高めることを目的としている。
論文 参考訳(メタデータ) (2020-08-07T22:25:36Z) - A Multi-cascaded Model with Data Augmentation for Enhanced Paraphrase
Detection in Short Texts [1.6758573326215689]
短文のパラフレーズ検出を改善するために,データ拡張戦略とマルチカスケードモデルを提案する。
私たちのモデルは広くて深く、クリーンでノイズの多い短いテキストにまたがってより堅牢性を提供します。
論文 参考訳(メタデータ) (2019-12-27T12:10:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。