論文の概要: Causality in Neural Networks -- An Extended Abstract
- arxiv url: http://arxiv.org/abs/2106.05842v1
- Date: Thu, 3 Jun 2021 09:52:36 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-15 13:06:03.748746
- Title: Causality in Neural Networks -- An Extended Abstract
- Title(参考訳): ニューラルネットワークの因果関係 --拡張された抽象
- Authors: Abbavaram Gowtham Reddy
- Abstract要約: 因果推論は、人間が使用する主要な学習および説明ツールである。
因果性の概念を機械学習に導入することは、より良い学習と説明可能なモデルを提供するのに役立つ。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Causal reasoning is the main learning and explanation tool used by humans. AI
systems should possess causal reasoning capabilities to be deployed in the real
world with trust and reliability. Introducing the ideas of causality to machine
learning helps in providing better learning and explainable models.
Explainability, causal disentanglement are some important aspects of any
machine learning model. Causal explanations are required to believe in a
model's decision and causal disentanglement learning is important for transfer
learning applications. We exploit the ideas of causality to be used in deep
learning models to achieve better and causally explainable models that are
useful in fairness, disentangled representation, etc.
- Abstract(参考訳): 因果推論は、人間が使う主要な学習および説明ツールである。
AIシステムは、信頼と信頼性を持って現実世界にデプロイされる因果推論能力を持つべきである。
因果性の概念を機械学習に導入することは、より良い学習と説明可能なモデルを提供するのに役立つ。
説明可能性、因果解離は、あらゆる機械学習モデルにおいて重要な側面である。
因果的説明はモデルの決定を信じるために必要であり、因果的絡み合い学習は転向学習アプリケーションにとって重要である。
因果性の考え方を深層学習モデルに活用して,公平性や不一致表現などにおいて有用な,より良く,因果的に説明可能なモデルを実現する。
関連論文リスト
- Conceptual and Unbiased Reasoning in Language Models [98.90677711523645]
本稿では,抽象的質問に対する概念的推論をモデルに強制する,新しい概念化フレームワークを提案する。
既存の大規模言語モデルは概念的推論では不足しており、様々なベンチマークでは9%から28%に低下している。
ハイレベルな抽象的推論が不偏で一般化可能な意思決定の鍵となるので、モデルがどのように改善できるかについて議論する。
論文 参考訳(メタデータ) (2024-03-30T00:53:53Z) - Why Online Reinforcement Learning is Causal [31.59766909722592]
強化学習(RL)と因果モデリングは自然に相互に補完する。
本稿では、因果モデリングのメリットを期待できる強化学習設定について検討する。
論文 参考訳(メタデータ) (2024-03-07T04:49:48Z) - Neural Causal Abstractions [63.21695740637627]
我々は、変数とそのドメインをクラスタリングすることで、因果抽象化の新しいファミリーを開発する。
本稿では,ニューラルネットワークモデルを用いて,そのような抽象化が現実的に学習可能であることを示す。
本実験は、画像データを含む高次元設定に因果推論をスケールする方法を記述し、その理論を支持する。
論文 参考訳(メタデータ) (2024-01-05T02:00:27Z) - Instance-wise or Class-wise? A Tale of Neighbor Shapley for
Concept-based Explanation [37.033629287045784]
ディープニューラルネットワークは多くのデータ駆動型および予測指向のアプリケーションで顕著なパフォーマンスを示している。
彼らの最も大きな欠点は、解釈可能性の欠如である。
論文 参考訳(メタデータ) (2021-09-03T08:34:37Z) - Systematic Evaluation of Causal Discovery in Visual Model Based
Reinforcement Learning [76.00395335702572]
AIと因果関係の中心的な目標は、抽象表現と因果構造を共同で発見することである。
因果誘導を研究するための既存の環境は、複雑なタスク固有の因果グラフを持つため、この目的には適していない。
本研究の目的は,高次変数の学習表現と因果構造の研究を促進することである。
論文 参考訳(メタデータ) (2021-07-02T05:44:56Z) - Towards Causal Representation Learning [96.110881654479]
機械学習とグラフィカル因果関係の2つの分野が生まれ、別々に発展した。
現在、他分野の進歩の恩恵を受けるために、クロスポリン化と両方の分野への関心が高まっている。
論文 参考訳(メタデータ) (2021-02-22T15:26:57Z) - Abduction and Argumentation for Explainable Machine Learning: A Position
Survey [2.28438857884398]
本稿では, 推論の2つの原則形式として, 帰納法と論証法を提案する。
機械学習の中で彼らが果たせる基本的な役割を具体化します。
論文 参考訳(メタデータ) (2020-10-24T13:23:44Z) - Social Commonsense Reasoning with Multi-Head Knowledge Attention [24.70946979449572]
社会的コモンセンス推論には、テキストの理解、社会イベントに関する知識、その実践的な意味、およびコモンセンス推論スキルが必要である。
本稿では,半構造化コモンセンス推論規則を符号化し,それをトランスフォーマーベースの推論セルに組み込むことを学習する,新しいマルチヘッド知識アテンションモデルを提案する。
論文 参考訳(メタデータ) (2020-10-12T10:24:40Z) - Explainability in Deep Reinforcement Learning [68.8204255655161]
説明可能な強化学習(XRL)の実現に向けての最近の成果を概観する。
エージェントの振る舞いを正当化し、説明することが不可欠である重要な状況において、RLモデルのより良い説明可能性と解釈性は、まだブラックボックスと見なされているものの内部動作に関する科学的洞察を得るのに役立つ。
論文 参考訳(メタデータ) (2020-08-15T10:11:42Z) - CausaLM: Causal Model Explanation Through Counterfactual Language Models [33.29636213961804]
CausaLMは、対実言語表現モデルを用いた因果モデル説明を作成するためのフレームワークである。
本稿では,BERT のような言語表現モデルが,ある意味ある概念に対する対実表現を効果的に学習できることを示す。
本手法の副産物は,テストされた概念の影響を受けない言語表現モデルである。
論文 参考訳(メタデータ) (2020-05-27T15:06:35Z) - A general framework for scientifically inspired explanations in AI [76.48625630211943]
我々は、AIシステムの説明を実装可能な一般的なフレームワークの理論的基盤として、科学的説明の構造の概念をインスタンス化する。
このフレームワークは、AIシステムの"メンタルモデル"を構築するためのツールを提供することを目的としている。
論文 参考訳(メタデータ) (2020-03-02T10:32:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。