論文の概要: Automated Configuration of Genetic Algorithms by Tuning for Anytime
Performance
- arxiv url: http://arxiv.org/abs/2106.06304v2
- Date: Thu, 17 Mar 2022 10:07:52 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-26 23:41:29.546121
- Title: Automated Configuration of Genetic Algorithms by Tuning for Anytime
Performance
- Title(参考訳): 時間性能のチューニングによる遺伝的アルゴリズムの自動構成
- Authors: Furong Ye and Carola Doerr and Hao Wang and Thomas B\"ack
- Abstract要約: コンフィグレーションタスクに対して、いつでもパフォーマンス対策を使うことが望ましいことを示します。
予測実行時間のチューニングは、ターゲットアルゴリズムに割り当てられる予算に対してはるかに敏感である。
- 参考スコア(独自算出の注目度): 4.33419118449588
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Finding the best configuration of algorithms' hyperparameters for a given
optimization problem is an important task in evolutionary computation. We
compare in this work the results of four different hyperparameter tuning
approaches for a family of genetic algorithms on 25 diverse pseudo-Boolean
optimization problems. More precisely, we compare previously obtained results
from a grid search with those obtained from three automated configuration
techniques: iterated racing, mixed-integer parallel efficient global
optimization, and mixed-integer evolutionary strategies.
Using two different cost metrics, expected running time and the area under
the empirical cumulative distribution function curve, we find that in several
cases the best configurations with respect to expected running time are
obtained when using the area under the empirical cumulative distribution
function curve as the cost metric during the configuration process. Our results
suggest that even when interested in expected running time performance, it
might be preferable to use anytime performance measures for the configuration
task. We also observe that tuning for expected running time is much more
sensitive with respect to the budget that is allocated to the target
algorithms.
- Abstract(参考訳): 与えられた最適化問題に対するアルゴリズムのハイパーパラメータの最適構成を見つけることは、進化計算において重要な課題である。
本研究では,25種類の疑似ブースル最適化問題に対する遺伝的アルゴリズム群に対する4つの異なるハイパーパラメータチューニング手法の結果を比較した。
より正確には、グリッドサーチから得られた結果と、反復レース、混合整数並列グローバル最適化、混合整数進化戦略の3つの自動構成手法から得られた結果を比較する。
予測実行時間と経験的累積分布関数曲線の下での面積の2つの異なるコスト指標を用いて、いくつかのケースでは、経験的累積分布関数曲線の下での面積を構成過程のコスト指標として使用する際に、予測実行時間に関する最適構成が得られる。
以上の結果から,実行時のパフォーマンスが期待できる場合であっても,設定作業に任意のパフォーマンス指標を使用する方が望ましいと考えられる。
また,予測実行時間のチューニングは,目標アルゴリズムに割り当てられる予算に対してはるかに敏感であることも確認した。
関連論文リスト
- Performance Evaluation of Evolutionary Algorithms for Analog Integrated
Circuit Design Optimisation [0.0]
本稿では,アナログ回路の自動サイズ化手法について述べる。
探索空間を対象とする探索は粒子生成関数と補修バウンド関数を用いて実装されている。
アルゴリズムは、より良い最適解に収束するように調整され、修正される。
論文 参考訳(メタデータ) (2023-10-19T03:26:36Z) - Performance Embeddings: A Similarity-based Approach to Automatic
Performance Optimization [71.69092462147292]
パフォーマンス埋め込みは、アプリケーション間でパフォーマンスチューニングの知識伝達を可能にする。
本研究では, 深層ニューラルネットワーク, 密度およびスパース線形代数合成, および数値風速予測ステンシルのケーススタディにおいて, この伝達チューニング手法を実証する。
論文 参考訳(メタデータ) (2023-03-14T15:51:35Z) - Massively Parallel Genetic Optimization through Asynchronous Propagation
of Populations [50.591267188664666]
Propulateは、グローバル最適化のための進化的最適化アルゴリズムとソフトウェアパッケージである。
提案アルゴリズムは, 選択, 突然変異, 交叉, 移動の変種を特徴とする。
Propulateは解の精度を犠牲にすることなく、最大で3桁高速であることがわかった。
論文 参考訳(メタデータ) (2023-01-20T18:17:34Z) - Efficient Non-Parametric Optimizer Search for Diverse Tasks [93.64739408827604]
興味のあるタスクを直接検索できる,スケーラブルで汎用的なフレームワークを初めて提示する。
基礎となる数学表現の自然木構造に着想を得て、空間を超木に再配置する。
我々は,モンテカルロ法を木探索に適用し,レジェクションサンプリングと等価形状検出を備える。
論文 参考訳(メタデータ) (2022-09-27T17:51:31Z) - Tree ensemble kernels for Bayesian optimization with known constraints
over mixed-feature spaces [54.58348769621782]
木アンサンブルはアルゴリズムチューニングやニューラルアーキテクチャ検索といったブラックボックス最適化タスクに適している。
ブラックボックス最適化にツリーアンサンブルを使うことの2つのよく知られた課題は、探索のためのモデル不確実性を効果的に定量化し、また、 (ii) ピースワイドな定値取得関数を最適化することである。
我々のフレームワークは、連続/離散的機能に対する非拘束ブラックボックス最適化のための最先端の手法と同様に、混合変数の特徴空間と既知の入力制約を組み合わせた問題の競合する手法よりも優れている。
論文 参考訳(メタデータ) (2022-07-02T16:59:37Z) - Per-run Algorithm Selection with Warm-starting using Trajectory-based
Features [5.073358743426584]
インスタンスごとのアルゴリズム選択は、与えられた問題の場合、1つまたは複数の適切なアルゴリズムを推奨する。
提案手法は,実行毎のアルゴリズム選択を行うオンラインアルゴリズム選択方式を提案する。
提案手法は静的なインスタンスごとのアルゴリズム選択よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-04-20T14:30:42Z) - Continuation Path with Linear Convergence Rate [18.405645120971496]
経路追従アルゴリズムは、一連のサブプロブレムを順次解決する合成最適化問題によく用いられる。
本稿では,経路追従アルゴリズムの一次双対解析と,対象問題に対する線形収束率を保証するために,各サブプロブレムがどの程度正確に解けるかを決定する。
スパーシリティ誘導ペナルティによる最適化を考慮し、正規化パラメータに対するアクティブセットの変化を分析する。
論文 参考訳(メタデータ) (2021-12-09T18:42:13Z) - Online hyperparameter optimization by real-time recurrent learning [57.01871583756586]
ニューラルネットワーク(rnn)におけるハイパーパラメータ最適化とパラメータ学習の類似性を活用した。
RNNのための学習済みのオンライン学習アルゴリズムのファミリーを適応させ、ハイパーパラメータとネットワークパラメータを同時に調整します。
この手順は、通常の方法に比べて、ウォールクロック時間のほんの少しで、体系的に一般化性能が向上する。
論文 参考訳(メタデータ) (2021-02-15T19:36:18Z) - Optimizing Optimizers: Regret-optimal gradient descent algorithms [9.89901717499058]
我々は,後悔最適アルゴリズムの存在,一意性,一貫性について検討する。
制御問題に対する一階最適条件を提供することにより、後悔最適アルゴリズムはそれらの力学において特定の構造を満たす必要があることを示す。
それらを近似する高速な数値法を提案し,長期的後悔を直接最適化する最適化アルゴリズムを生成する。
論文 参考訳(メタデータ) (2020-12-31T19:13:53Z) - Analysis of the Performance of Algorithm Configurators for Search
Heuristics with Global Mutation Operators [0.0]
ParamRLSは、局所探索で使用する最適な近傍サイズを効率的に特定できる。
そこで,ParamRLS-Fは,両問題クラスにおける最適パラメータ値の最適化時間よりもかなり小さいカットオフ時間を用いても,最適な突然変異率を識別できることを示す。
論文 参考訳(メタデータ) (2020-04-09T12:42:30Z) - Adaptivity of Stochastic Gradient Methods for Nonconvex Optimization [71.03797261151605]
適応性は現代最適化理論において重要であるが、研究されていない性質である。
提案アルゴリズムは,PL目標に対して既存のアルゴリズムよりも優れた性能を保ちながら,PL目標に対して最適な収束性を実現することを実証した。
論文 参考訳(メタデータ) (2020-02-13T05:42:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。