論文の概要: Performance Evaluation of Evolutionary Algorithms for Analog Integrated
Circuit Design Optimisation
- arxiv url: http://arxiv.org/abs/2310.12440v1
- Date: Thu, 19 Oct 2023 03:26:36 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-20 17:06:11.001002
- Title: Performance Evaluation of Evolutionary Algorithms for Analog Integrated
Circuit Design Optimisation
- Title(参考訳): アナログ集積回路設計最適化のための進化的アルゴリズムの性能評価
- Authors: Ria Rashid, Gopavaram Raghunath, Vasant Badugu, Nandakumar Nambath
- Abstract要約: 本稿では,アナログ回路の自動サイズ化手法について述べる。
探索空間を対象とする探索は粒子生成関数と補修バウンド関数を用いて実装されている。
アルゴリズムは、より良い最適解に収束するように調整され、修正される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: An automated sizing approach for analog circuits using evolutionary
algorithms is presented in this paper. A targeted search of the search space
has been implemented using a particle generation function and a repair-bounds
function that has resulted in faster convergence to the optimal solution. The
algorithms are tuned and modified to converge to a better optimal solution with
less standard deviation for multiple runs compared to standard versions.
Modified versions of the artificial bee colony optimisation algorithm, genetic
algorithm, grey wolf optimisation algorithm, and particle swarm optimisation
algorithm are tested and compared for the optimal sizing of two operational
amplifier topologies. An extensive performance evaluation of all the modified
algorithms showed that the modifications have resulted in consistent
performance with improved convergence for all the algorithms. The
implementation of parallel computation in the algorithms has reduced run time.
Among the considered algorithms, the modified artificial bee colony
optimisation algorithm gave the most optimal solution with consistent results
across multiple runs.
- Abstract(参考訳): 本稿では,進化的アルゴリズムを用いたアナログ回路の自動サイズ化手法を提案する。
探索空間を対象とする探索は粒子生成関数と修正限界関数を用いて実装され、最適な解への収束が速くなった。
アルゴリズムは調整および修正され、標準バージョンに比べて複数の実行に対する標準偏差が少なく、より良い最適解に収束する。
人工蜂コロニー最適化アルゴリズム、遺伝的アルゴリズム、グレイウルフ最適化アルゴリズム、粒子群最適化アルゴリズムの修正版をテストし、2つの演算増幅器トポロジの最適サイズと比較した。
改良アルゴリズムの広範な性能評価により, 改良されたアルゴリズムは, 全アルゴリズムの収束性の向上とともに一貫した性能を示した。
並列計算をアルゴリズムに実装することで、実行時間が短縮される。
検討されたアルゴリズムのうち、修正された人工蜂コロニー最適化アルゴリズムは、複数のランに一貫した結果をもたらす最も最適な解を与えた。
関連論文リスト
- Provably Faster Algorithms for Bilevel Optimization via Without-Replacement Sampling [96.47086913559289]
勾配に基づくアルゴリズムはバイレベル最適化に広く用いられている。
本研究では,より高速な収束率を実現する非置換サンプリングに基づくアルゴリズムを提案する。
合成および実世界の両方のアプリケーションに対してアルゴリズムを検証する。
論文 参考訳(メタデータ) (2024-11-07T17:05:31Z) - Accelerating Cutting-Plane Algorithms via Reinforcement Learning
Surrogates [49.84541884653309]
凸離散最適化問題に対する現在の標準的なアプローチは、カットプレーンアルゴリズムを使うことである。
多くの汎用カット生成アルゴリズムが存在するにもかかわらず、大規模な離散最適化問題は、難易度に悩まされ続けている。
そこで本研究では,強化学習による切削平面アルゴリズムの高速化手法を提案する。
論文 参考訳(メタデータ) (2023-07-17T20:11:56Z) - Fast Computation of Optimal Transport via Entropy-Regularized Extragradient Methods [75.34939761152587]
2つの分布間の最適な輸送距離の効率的な計算は、様々な応用を促進するアルゴリズムとして機能する。
本稿では,$varepsilon$加法精度で最適な輸送を計算できるスケーラブルな一階最適化法を提案する。
論文 参考訳(メタデータ) (2023-01-30T15:46:39Z) - Prasatul Matrix: A Direct Comparison Approach for Analyzing Evolutionary
Optimization Algorithms [2.1320960069210475]
進化最適化アルゴリズムの性能を解析するために,直接比較手法を提案する。
アルゴリズムの性能を評価するために、プラサトゥール行列に基づいて5つの異なる性能尺度を設計する。
論文 参考訳(メタデータ) (2022-12-01T17:21:44Z) - Provably Faster Algorithms for Bilevel Optimization [54.83583213812667]
バイレベル最適化は多くの重要な機械学習アプリケーションに広く適用されている。
両レベル最適化のための2つの新しいアルゴリズムを提案する。
両アルゴリズムが$mathcalO(epsilon-1.5)$の複雑さを達成し,既存のアルゴリズムを桁違いに上回っていることを示す。
論文 参考訳(メタデータ) (2021-06-08T21:05:30Z) - Dynamic Cat Swarm Optimization Algorithm for Backboard Wiring Problem [0.9990687944474739]
本稿では,動的キャット群最適化(Dynamic Cat Swarm Optimization)と呼ばれる,強力な群知能メタヒューリスティック最適化アルゴリズムを提案する。
提案アルゴリズムは,アルゴリズムの選択スキームと探索モードを変更することにより,これらの位相間の適切なバランスを与える新しい手法を提案する。
最適化の結果,提案アルゴリズムの有効性が示された。
論文 参考訳(メタデータ) (2021-04-27T19:41:27Z) - Optimizing Optimizers: Regret-optimal gradient descent algorithms [9.89901717499058]
我々は,後悔最適アルゴリズムの存在,一意性,一貫性について検討する。
制御問題に対する一階最適条件を提供することにより、後悔最適アルゴリズムはそれらの力学において特定の構造を満たす必要があることを示す。
それらを近似する高速な数値法を提案し,長期的後悔を直接最適化する最適化アルゴリズムを生成する。
論文 参考訳(メタデータ) (2020-12-31T19:13:53Z) - Adaptive and Universal Algorithms for Variational Inequalities with
Optimal Convergence [29.189409618561964]
我々は単調演算子を用いた変分不等式の新しい適応アルゴリズムを開発した。
我々のアルゴリズムは未知の問題パラメータに自動的に適応する。
我々のアルゴリズムは普遍的であり、同時に最適な収束率を達成することを示す。
論文 参考訳(メタデータ) (2020-10-15T14:44:26Z) - Sequential Subspace Search for Functional Bayesian Optimization
Incorporating Experimenter Intuition [63.011641517977644]
本アルゴリズムは,実験者のガウス過程から引き出された一組の引き数で区切られた関数空間の有限次元ランダム部分空間列を生成する。
標準ベイズ最適化は各部分空間に適用され、次の部分空間の出発点(オリジン)として用いられる最良の解である。
シミュレーションおよび実世界の実験,すなわちブラインド関数マッチング,アルミニウム合金の最適析出強化関数の探索,深層ネットワークの学習速度スケジュール最適化において,本アルゴリズムを検証した。
論文 参考訳(メタデータ) (2020-09-08T06:54:11Z) - Benchmarking Meta-heuristic Optimization [0.0]
多くのメタヒューリスティックアルゴリズムは非線形関数を解く際に非常に効率的である。
メタヒューリスティックアルゴリズムは、幅広い問題に適用できる問題に依存しない手法である。
論文 参考訳(メタデータ) (2020-07-27T12:25:31Z) - Adaptivity of Stochastic Gradient Methods for Nonconvex Optimization [71.03797261151605]
適応性は現代最適化理論において重要であるが、研究されていない性質である。
提案アルゴリズムは,PL目標に対して既存のアルゴリズムよりも優れた性能を保ちながら,PL目標に対して最適な収束性を実現することを実証した。
論文 参考訳(メタデータ) (2020-02-13T05:42:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。