論文の概要: Multi-modal Scene-compliant User Intention Estimation for Navigation
- arxiv url: http://arxiv.org/abs/2106.06920v1
- Date: Sun, 13 Jun 2021 05:11:33 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-15 15:37:07.877083
- Title: Multi-modal Scene-compliant User Intention Estimation for Navigation
- Title(参考訳): ナビゲーションのためのマルチモーダルシーン対応ユーザ意図推定
- Authors: Kavindie Katuwandeniya, Stefan H. Kiss, Lei Shi, and Jaime Valls Miro
- Abstract要約: 本研究では,移動体操作時のユーザ意図分布生成フレームワークを提案する。
モデルは過去の観測された軌跡から学習し、視覚環境から派生した可視性情報を活用する。
実験は、オープンソースの都市運転シミュレータCARLA上に構築されたカスタム車椅子モデルを用いて収集されたデータセット上で行われた。
- 参考スコア(独自算出の注目度): 1.9117798322548485
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A multi-modal framework to generated user intention distributions when
operating a mobile vehicle is proposed in this work. The model learns from past
observed trajectories and leverages traversability information derived from the
visual surroundings to produce a set of future trajectories, suitable to be
directly embedded into a perception-action shared control strategy on a mobile
agent, or as a safety layer to supervise the prudent operation of the vehicle.
We base our solution on a conditional Generative Adversarial Network with
Long-Short Term Memory cells to capture trajectory distributions conditioned on
past trajectories, further fused with traversability probabilities derived from
visual segmentation with a Convolutional Neural Network. The proposed
data-driven framework results in a significant reduction in error of the
predicted trajectories (versus the ground truth) from comparable strategies in
the literature (e.g. Social-GAN) that fail to account for information other
than the agent's past history. Experiments were conducted on a dataset
collected with a custom wheelchair model built onto the open-source urban
driving simulator CARLA, proving also that the proposed framework can be used
with a small, un-annotated dataset.
- Abstract(参考訳): 本研究では,移動車両の運用時にユーザ意図分布を生成するマルチモーダルフレームワークを提案する。
モデルは、過去の観測された軌道から学習し、視覚環境由来のトラバーサビリティ情報を利用して、将来の軌道のセットを生成し、移動エージェントの知覚行動共有制御戦略に直接組み込むか、車両の慎重な操作を監督するための安全層として使用する。
提案手法は, 長期記憶セルを有する条件付き生成逆向ネットワークを基盤とし, 過去の軌道上で条件づけられた軌道分布をキャプチャし, 畳み込みニューラルネットワークを用いた視覚セグメンテーションによるトラバーサビリティ確率と融合する。
提案したデータ駆動型フレームワークは、予測された軌跡(基礎的真実を逆転する)の誤りを文学(例)で同等の戦略から大幅に減少させる。
エージェントの過去の履歴以外の情報を説明できないソーシャルGAN(Social-GAN)。
実験は、オープンソースの都市運転シミュレータcarlaにカスタム車椅子モデルが組み込まれたデータセットで行われ、提案されたフレームワークが、小さな注釈なしのデータセットで使用できることを証明した。
関連論文リスト
- Diffusion-Based Environment-Aware Trajectory Prediction [3.1406146587437904]
自動運転車の安全かつ効率的な運転には、交通参加者の将来の軌跡を予測する能力が不可欠である。
本稿では,多エージェント軌道予測のための拡散モデルを提案する。
このモデルは、交通参加者と環境の間の複雑な相互作用を捉え、データのマルチモーダルな性質を正確に学習することができる。
論文 参考訳(メタデータ) (2024-03-18T10:35:15Z) - Probabilistic Prediction of Longitudinal Trajectory Considering Driving
Heterogeneity with Interpretability [12.929047288003213]
本研究では,混合密度ネットワーク(MDN)を組み合わせた軌道予測フレームワークを提案する。
提案するフレームワークは、広範囲の車両軌道データセットに基づいてテストされる。
論文 参考訳(メタデータ) (2023-12-19T12:56:56Z) - JRDB-Traj: A Dataset and Benchmark for Trajectory Forecasting in Crowds [79.00975648564483]
ロボット工学、自動運転車、ナビゲーションなどの分野で使用される軌道予測モデルは、現実のシナリオにおいて課題に直面している。
このデータセットは、ロボットの観点から、すべてのエージェント、シーンイメージ、ポイントクラウドの位置を含む包括的なデータを提供する。
本研究の目的は,ロボットに対するエージェントの将来の位置を,生の感覚入力データを用いて予測することである。
論文 参考訳(メタデータ) (2023-11-05T18:59:31Z) - Layout Sequence Prediction From Noisy Mobile Modality [53.49649231056857]
軌道予測は、自律運転やロボット工学などの応用における歩行者運動を理解する上で重要な役割を担っている。
現在の軌道予測モデルは、視覚的モダリティからの長い、完全な、正確に観察されたシーケンスに依存する。
本稿では,物体の障害物や視界外を,完全に視認できる軌跡を持つものと同等に扱う新しいアプローチであるLTrajDiffを提案する。
論文 参考訳(メタデータ) (2023-10-09T20:32:49Z) - A Diffusion-Model of Joint Interactive Navigation [14.689298253430568]
本稿では,交通シナリオを生成する拡散に基づくDJINNを提案する。
我々のアプローチは、過去、現在、未来からのフレキシブルな状態観察のセットに基づいて、全てのエージェントの軌跡を共同で拡散させる。
本稿では,DJINNが様々な条件分布からの直接的テスト時間サンプリングを柔軟に行う方法を示す。
論文 参考訳(メタデータ) (2023-09-21T22:10:20Z) - TrafficBots: Towards World Models for Autonomous Driving Simulation and
Motion Prediction [149.5716746789134]
我々は,データ駆動型交通シミュレーションを世界モデルとして定式化できることを示した。
動作予測とエンドツーエンドの運転に基づくマルチエージェントポリシーであるTrafficBotsを紹介する。
オープンモーションデータセットの実験は、TrafficBotsが現実的なマルチエージェント動作をシミュレートできることを示している。
論文 参考訳(メタデータ) (2023-03-07T18:28:41Z) - CARLA-GeAR: a Dataset Generator for a Systematic Evaluation of
Adversarial Robustness of Vision Models [61.68061613161187]
本稿では,合成データセットの自動生成ツールであるCARLA-GeARについて述べる。
このツールは、Python APIを使用して、CARLAシミュレータ上に構築されており、自律運転のコンテキストにおいて、いくつかのビジョンタスク用のデータセットを生成することができる。
本稿では,CARLA-GeARで生成されたデータセットが,現実世界の敵防衛のベンチマークとして今後どのように利用されるかを示す。
論文 参考訳(メタデータ) (2022-06-09T09:17:38Z) - Spatio-Temporal Look-Ahead Trajectory Prediction using Memory Neural
Network [6.065344547161387]
本論文では,記憶神経ネットワークと呼ばれる新しい繰り返しニューラルネットワークを用いて,時空間的視線軌道予測の問題を解くことを試みる。
提案手法は計算量が少なく,LSTMやGRUを用いた他のディープラーニングモデルと比較すると,単純なアーキテクチャである。
論文 参考訳(メタデータ) (2021-02-24T05:02:19Z) - A Deep Learning Framework for Generation and Analysis of Driving
Scenario Trajectories [2.908482270923597]
本研究では,運転シナリオトラジェクトリの生成と解析のための統合型ディープラーニングフレームワークを提案する。
本研究では,フィールド内データ収集から得られた実世界のシナリオトラジェクトリにおけるフレームワークの性能について実験的に検討する。
論文 参考訳(メタデータ) (2020-07-28T23:33:05Z) - Risk-Averse MPC via Visual-Inertial Input and Recurrent Networks for
Online Collision Avoidance [95.86944752753564]
本稿では,モデル予測制御(MPC)の定式化を拡張したオンライン経路計画アーキテクチャを提案する。
我々のアルゴリズムは、状態推定の共分散を推論するリカレントニューラルネットワーク(RNN)とオブジェクト検出パイプラインを組み合わせる。
本手法のロバスト性は, 複雑な四足歩行ロボットの力学で検証され, ほとんどのロボットプラットフォームに適用可能である。
論文 参考訳(メタデータ) (2020-07-28T07:34:30Z) - Implicit Latent Variable Model for Scene-Consistent Motion Forecasting [78.74510891099395]
本稿では,センサデータから直接複雑な都市交通のシーン一貫性のある動き予測を学習することを目的とする。
我々は、シーンを相互作用グラフとしてモデル化し、強力なグラフニューラルネットワークを用いてシーンの分散潜在表現を学習する。
論文 参考訳(メタデータ) (2020-07-23T14:31:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。