論文の概要: Weakly-supervised High-resolution Segmentation of Mammography Images for
Breast Cancer Diagnosis
- arxiv url: http://arxiv.org/abs/2106.07049v2
- Date: Tue, 15 Jun 2021 03:46:23 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-16 10:35:51.301378
- Title: Weakly-supervised High-resolution Segmentation of Mammography Images for
Breast Cancer Diagnosis
- Title(参考訳): 乳癌診断のための弱教師付き高分解能マンモグラフィ画像分割
- Authors: Kangning Liu, Yiqiu Shen, Nan Wu, Jakub Ch{\l}\k{e}dowski, Carlos
Fernandez-Granda, Krzysztof J. Geras
- Abstract要約: がん診断において、入力画像の出力に責任のある領域を局在させることにより、解釈可能性を実現することができる。
本稿では,高解像度画像の弱教師付きセグメンテーションを実現するニューラルネットワークアーキテクチャを提案する。
乳がん検診にマンモグラフィーを用いて適用し, 大規模臨床応用データセットで検証した。
- 参考スコア(独自算出の注目度): 17.936019428281586
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the last few years, deep learning classifiers have shown promising results
in image-based medical diagnosis. However, interpreting the outputs of these
models remains a challenge. In cancer diagnosis, interpretability can be
achieved by localizing the region of the input image responsible for the
output, i.e. the location of a lesion. Alternatively, segmentation or detection
models can be trained with pixel-wise annotations indicating the locations of
malignant lesions. Unfortunately, acquiring such labels is labor-intensive and
requires medical expertise. To overcome this difficulty, weakly-supervised
localization can be utilized. These methods allow neural network classifiers to
output saliency maps highlighting the regions of the input most relevant to the
classification task (e.g. malignant lesions in mammograms) using only
image-level labels (e.g. whether the patient has cancer or not) during
training. When applied to high-resolution images, existing methods produce
low-resolution saliency maps. This is problematic in applications in which
suspicious lesions are small in relation to the image size. In this work, we
introduce a novel neural network architecture to perform weakly-supervised
segmentation of high-resolution images. The proposed model selects regions of
interest via coarse-level localization, and then performs fine-grained
segmentation of those regions. We apply this model to breast cancer diagnosis
with screening mammography, and validate it on a large clinically-realistic
dataset. Measured by Dice similarity score, our approach outperforms existing
methods by a large margin in terms of localization performance of benign and
malignant lesions, relatively improving the performance by 39.6% and 20.0%,
respectively. Code and the weights of some of the models are available at
https://github.com/nyukat/GLAM
- Abstract(参考訳): 近年,深層学習分類器は画像に基づく診断において有望な結果を示した。
しかし、これらのモデルの出力を解釈することは依然として困難である。
がん診断において、入力画像の領域、すなわち出力に責任を持つ領域を局在させることにより、解釈可能性を達成することができる。
病変の場所。
または、セグメンテーションまたは検出モデルは、悪性病変の位置を示すピクセルワイズアノテーションで訓練することができる。
残念ながら、そのようなラベルの取得は労働集約的であり、医療の専門知識を必要とする。
この困難を克服するために、弱教師付きローカライゼーションを利用することができる。
これらの手法により、ニューラルネットワーク分類器は、分類タスクに最も関係のある入力の領域(例えば、)をハイライトした有能マップを出力することができる。
マンモグラムの悪性病変) 画像レベルのラベル(例)のみを使用する。
訓練中、患者ががんを患っているかどうか。
高解像度画像に適用すると、既存の手法は低解像度の塩分マップを生成する。
これは画像サイズに関して不審な病変が小さいアプリケーションでは問題となる。
本研究では,高分解能画像の弱教師付きセグメンテーションを行うニューラルネットワークアーキテクチャを提案する。
提案モデルでは、粗いレベルの局所化により興味のある領域を選択し、その領域のきめ細かいセグメンテーションを行う。
このモデルを乳がん検診に応用し, 臨床的に現実的な大規模データセットで検証した。
Dice類似度スコアを用いて,良性病変および悪性病変の局所化性能において既存手法よりも高い成績を示し,それぞれ39.6%,20.0%の改善率を示した。
コードとモデルの重み付けはhttps://github.com/nyukat/GLAMで確認できる。
関連論文リスト
- Analysing the effectiveness of a generative model for semi-supervised
medical image segmentation [23.898954721893855]
自動セグメンテーションにおける最先端技術は、U-Netのような差別モデルを用いて、教師付き学習のままである。
半教師付き学習(SSL)は、より堅牢で信頼性の高いモデルを得るために、重複のないデータの豊富さを活用する。
セマンティックGANのような深層生成モデルは、医療画像分割問題に取り組むための真に実行可能な代替手段である。
論文 参考訳(メタデータ) (2022-11-03T15:19:59Z) - Mixed-UNet: Refined Class Activation Mapping for Weakly-Supervised
Semantic Segmentation with Multi-scale Inference [28.409679398886304]
我々は、デコードフェーズに2つの並列分岐を持つMixed-UNetという新しいモデルを開発する。
地域病院や公開データセットから収集したデータセットに対して,いくつかの一般的なディープラーニングに基づくセグメンテーションアプローチに対して,設計したMixed-UNetを評価した。
論文 参考訳(メタデータ) (2022-05-06T08:37:02Z) - Generative Residual Attention Network for Disease Detection [51.60842580044539]
本稿では, 条件付き生成逆学習を用いたX線疾患発生のための新しいアプローチを提案する。
我々は,患者の身元を保存しながら,対象領域に対応する放射線画像を生成する。
次に、ターゲット領域で生成されたX線画像を用いてトレーニングを増強し、検出性能を向上させる。
論文 参考訳(メタデータ) (2021-10-25T14:15:57Z) - Global Guidance Network for Breast Lesion Segmentation in Ultrasound
Images [84.03487786163781]
我々は,大域的誘導ブロック(GGB)と乳房病変境界検出モジュールを備えた深部畳み込みニューラルネットワークを開発した。
当社のネットワークは、乳房超音波病変分割における他の医療画像分割方法および最近のセマンティックセグメンテーション方法よりも優れています。
論文 参考訳(メタデータ) (2021-04-05T13:15:22Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
医療画像分割のための新しい手法を提案する。
深層畳み込みネットワークを用いた数ショット画像セグメンタを構築します。
深層埋め込みの識別性を高め,同一クラスの特徴領域のクラスタリングを促進する。
論文 参考訳(メタデータ) (2020-12-10T04:01:07Z) - Explainable Disease Classification via weakly-supervised segmentation [4.154485485415009]
CAD(Computer Aided Diagnosis)に対するディープラーニングアプローチは、画像分類(Normal or Abnormal)問題として問題を引き起こすのが一般的である。
本稿では,この問題を考察し,診断に先立ってエビデンスを探す臨床実践を模倣するアプローチを提案する。
提案法はマンモグラフィー画像から乳癌検出に適応する。
論文 参考訳(メタデータ) (2020-08-24T09:00:30Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
磁気共鳴画像(MRI)の異常検出は教師なし手法で行うことができる。
本研究では,変分オートエンコーダの潜伏空間における相似関数の計算に基づいて,腫瘍検出のためのスライスワイズ半教師法を提案する。
本研究では,高解像度画像上でのモデルをトレーニングし,再現の質を向上させることにより,異なるベースラインに匹敵する結果が得られることを示す。
論文 参考訳(メタデータ) (2020-07-24T14:02:09Z) - Multi-label Thoracic Disease Image Classification with Cross-Attention
Networks [65.37531731899837]
胸部X線画像から胸部疾患を自動分類するためのCAN(Cross-Attention Networks)を提案する。
また,クロスエントロピー損失を超える新たな損失関数を設計し,クラス間の不均衡を克服する。
論文 参考訳(メタデータ) (2020-07-21T14:37:00Z) - Weakly-Supervised Segmentation for Disease Localization in Chest X-Ray
Images [0.0]
医用胸部X線画像のセマンティックセグメンテーションに対する新しいアプローチを提案する。
本手法は肺と胸壁の間の異常な空気量を検出するための胸部X線検査に適用可能である。
論文 参考訳(メタデータ) (2020-07-01T20:48:35Z) - Breast Cancer Histopathology Image Classification and Localization using
Multiple Instance Learning [2.4178424543973267]
診断のための顕微鏡組織像を解析するためのコンピュータ支援病理学は、診断のコストと遅延をもたらす可能性がある。
病理学における深層学習は、分類とローカライゼーションのタスクにおいて最先端のパフォーマンスを達成した過去10年間に注目されている。
本稿では,BreakHISとBACHの2つのデータセットの分類とローカライゼーション結果について述べる。
論文 参考訳(メタデータ) (2020-02-16T10:29:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。