論文の概要: Analysing the effectiveness of a generative model for semi-supervised
medical image segmentation
- arxiv url: http://arxiv.org/abs/2211.01886v1
- Date: Thu, 3 Nov 2022 15:19:59 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-04 13:36:45.563838
- Title: Analysing the effectiveness of a generative model for semi-supervised
medical image segmentation
- Title(参考訳): 半教師付き医用画像分割における生成モデルの有効性の検討
- Authors: Margherita Rosnati, Fabio De Sousa Ribeiro, Miguel Monteiro, Daniel
Coelho de Castro, Ben Glocker
- Abstract要約: 自動セグメンテーションにおける最先端技術は、U-Netのような差別モデルを用いて、教師付き学習のままである。
半教師付き学習(SSL)は、より堅牢で信頼性の高いモデルを得るために、重複のないデータの豊富さを活用する。
セマンティックGANのような深層生成モデルは、医療画像分割問題に取り組むための真に実行可能な代替手段である。
- 参考スコア(独自算出の注目度): 23.898954721893855
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Image segmentation is important in medical imaging, providing valuable,
quantitative information for clinical decision-making in diagnosis, therapy,
and intervention. The state-of-the-art in automated segmentation remains
supervised learning, employing discriminative models such as U-Net. However,
training these models requires access to large amounts of manually labelled
data which is often difficult to obtain in real medical applications. In such
settings, semi-supervised learning (SSL) attempts to leverage the abundance of
unlabelled data to obtain more robust and reliable models. Recently, generative
models have been proposed for semantic segmentation, as they make an attractive
choice for SSL. Their ability to capture the joint distribution over input
images and output label maps provides a natural way to incorporate information
from unlabelled images. This paper analyses whether deep generative models such
as the SemanticGAN are truly viable alternatives to tackle challenging medical
image segmentation problems. To that end, we thoroughly evaluate the
segmentation performance, robustness, and potential subgroup disparities of
discriminative and generative segmentation methods when applied to large-scale,
publicly available chest X-ray datasets.
- Abstract(参考訳): 画像分割は医療画像において重要であり、診断、治療、介入における臨床的意思決定のための貴重な量的情報を提供する。
自動セグメンテーションの最先端は依然として教師付き学習であり、U-Netのような差別モデルを採用している。
しかし、これらのモデルのトレーニングには大量の手動ラベル付きデータへのアクセスが必要であり、実際の医学的応用では入手が困難であることが多い。
このような環境では、半教師付き学習(SSL)は、より堅牢で信頼性の高いモデルを得るために、重複のないデータの豊富さを活用する。
近年、sslの魅力的な選択をするため、セマンティックセグメンテーションのための生成モデルが提案されている。
入力画像と出力ラベルマップのジョイント分布をキャプチャする能力は、ラベルのない画像から情報を組み込む自然な方法を提供する。
本稿では,セマンティックGANのような深部生成モデルが,医用画像分割問題に挑戦するための真の代替手段であるかどうかを考察する。
そこで我々は,大規模で公開可能な胸部X線データセットに適用した場合,識別的・生成的セグメンテーション手法のセグメンテーション性能,ロバスト性,潜在的サブグループ差を徹底的に評価した。
関連論文リスト
- MedCLIP-SAMv2: Towards Universal Text-Driven Medical Image Segmentation [2.2585213273821716]
MedCLIP-SAMv2はCLIPとSAMモデルを統合して臨床スキャンのセグメンテーションを行う新しいフレームワークである。
提案手法は,DHN-NCE(Decoupled Hard Negative Noise Contrastive Estimation)によるBiomedCLIPモデルの微調整を含む。
また,ゼロショットセグメンテーションラベルを弱教師付きパラダイム内で使用することにより,セグメンテーション品質をさらに向上する。
論文 参考訳(メタデータ) (2024-09-28T23:10:37Z) - Cross-model Mutual Learning for Exemplar-based Medical Image Segmentation [25.874281336821685]
Exemplar-based Medical Image(CMEMS)のためのクロスモデル相互学習フレームワーク
外来医用画像のためのクロスモデル相互学習フレームワーク(CMEMS)について紹介する。
論文 参考訳(メタデータ) (2024-04-18T00:18:07Z) - MedCLIP-SAM: Bridging Text and Image Towards Universal Medical Image Segmentation [2.2585213273821716]
本稿では,CLIPモデルとSAMモデルを組み合わせて臨床スキャンのセグメンテーションを生成する新しいフレームワーク MedCLIP-SAM を提案する。
3つの多様なセグメンテーションタスクと医用画像モダリティを広範囲にテストすることにより、提案手法は優れた精度を示した。
論文 参考訳(メタデータ) (2024-03-29T15:59:11Z) - Ambiguous Medical Image Segmentation using Diffusion Models [60.378180265885945]
我々は,グループ洞察の分布を学習することで,複数の可算出力を生成する単一拡散モデルに基づくアプローチを提案する。
提案モデルでは,拡散の固有のサンプリングプロセスを利用してセグメンテーションマスクの分布を生成する。
その結果,提案手法は既存の最先端曖昧なセグメンテーションネットワークよりも優れていることがわかった。
論文 参考訳(メタデータ) (2023-04-10T17:58:22Z) - PCA: Semi-supervised Segmentation with Patch Confidence Adversarial
Training [52.895952593202054]
医用画像セグメンテーションのためのPatch Confidence Adrial Training (PCA) と呼ばれる半教師付き対向法を提案する。
PCAは各パッチの画素構造とコンテキスト情報を学習し、十分な勾配フィードバックを得る。
本手法は, 医用画像のセグメンテーションにおいて, 最先端の半教師付き手法より優れており, その有効性を示している。
論文 参考訳(メタデータ) (2022-07-24T07:45:47Z) - Weakly-supervised High-resolution Segmentation of Mammography Images for
Breast Cancer Diagnosis [17.936019428281586]
がん診断において、入力画像の出力に責任のある領域を局在させることにより、解釈可能性を実現することができる。
本稿では,高解像度画像の弱教師付きセグメンテーションを実現するニューラルネットワークアーキテクチャを提案する。
乳がん検診にマンモグラフィーを用いて適用し, 大規模臨床応用データセットで検証した。
論文 参考訳(メタデータ) (2021-06-13T17:25:21Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
医療画像分割のための新しい手法を提案する。
深層畳み込みネットワークを用いた数ショット画像セグメンタを構築します。
深層埋め込みの識別性を高め,同一クラスの特徴領域のクラスタリングを促進する。
論文 参考訳(メタデータ) (2020-12-10T04:01:07Z) - Towards Robust Partially Supervised Multi-Structure Medical Image
Segmentation on Small-Scale Data [123.03252888189546]
データ不足下における部分教師付き学習(PSL)における方法論的ギャップを埋めるために,不確実性下でのビシナルラベル(VLUU)を提案する。
マルチタスク学習とヴィジナルリスク最小化によって動機づけられたVLUUは、ビジナルラベルを生成することによって、部分的に教師付き問題を完全な教師付き問題に変換する。
本研究は,ラベル効率の高い深層学習における新たな研究の方向性を示唆するものである。
論文 参考訳(メタデータ) (2020-11-28T16:31:00Z) - Realistic Adversarial Data Augmentation for MR Image Segmentation [17.951034264146138]
医用画像セグメンテーションのためのニューラルネットワークのトレーニングのための逆データ拡張手法を提案する。
このモデルでは,MR画像における共通の種類のアーチファクトによって生じる強度不均一性,すなわちバイアス場をモデル化する。
このような手法により,モデルの一般化と堅牢性の向上が図られ,低データシナリオにおける大幅な改善が期待できる。
論文 参考訳(メタデータ) (2020-06-23T20:43:18Z) - Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model [71.80319052891817]
医用画像分類のための関係駆動型半教師付きフレームワークを提案する。
これは、摂動下で与えられた入力の予測一貫性を促進することでラベルのないデータを利用する。
本手法は,シングルラベルおよびマルチラベル画像分類のシナリオにおいて,最先端の半教師付き学習手法よりも優れる。
論文 参考訳(メタデータ) (2020-05-15T06:57:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。