論文の概要: FairCanary: Rapid Continuous Explainable Fairness
- arxiv url: http://arxiv.org/abs/2106.07057v4
- Date: Sun, 28 May 2023 16:20:54 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-31 05:00:11.435521
- Title: FairCanary: Rapid Continuous Explainable Fairness
- Title(参考訳): FairCanary: 迅速な継続的説明可能なフェアネス
- Authors: Avijit Ghosh, Aalok Shanbhag, Christo Wilson
- Abstract要約: 本稿では,新しいモデルバイアス量化尺度であるQuantile Demographic Drift(QDD)を提案する。
QDDは継続的な監視シナリオに最適であり、従来のしきい値ベースのバイアスメトリクスの統計的制限に悩まされない。
QDDをFairCanaryと呼ばれる継続的モデル監視システムに組み込み、各予測毎に計算された既存の説明を再利用します。
- 参考スコア(独自算出の注目度): 8.362098382773265
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Systems that offer continuous model monitoring have emerged in response to
(1) well-documented failures of deployed Machine Learning (ML) and Artificial
Intelligence (AI) models and (2) new regulatory requirements impacting these
models. Existing monitoring systems continuously track the performance of
deployed ML models and compute feature importance (a.k.a. explanations) for
each prediction to help developers identify the root causes of emergent model
performance problems.
We present Quantile Demographic Drift (QDD), a novel model bias
quantification metric that uses quantile binning to measure differences in the
overall prediction distributions over subgroups. QDD is ideal for continuous
monitoring scenarios, does not suffer from the statistical limitations of
conventional threshold-based bias metrics, and does not require outcome labels
(which may not be available at runtime). We incorporate QDD into a continuous
model monitoring system, called FairCanary, that reuses existing explanations
computed for each individual prediction to quickly compute explanations for the
QDD bias metrics. This optimization makes FairCanary an order of magnitude
faster than previous work that has tried to generate feature-level bias
explanations.
- Abstract(参考訳): 継続的モデル監視を提供するシステムは、(1)デプロイされた機械学習(ML)モデルと人工知能(AI)モデルの文書化された失敗、(2)これらのモデルに影響を与える新たな規制要件に対応して登場した。
既存の監視システムは、デプロイされたMLモデルのパフォーマンスを継続的に追跡し、各予測に対する機能の重要性(説明)を計算し、開発者が創発的なモデルパフォーマンス問題の根本原因を特定するのに役立つ。
qdd(quantile demographic drift)は,分位数二分法を用いて部分群全体の予測分布の差を測定する,新しいモデルバイアス定量化指標である。
QDDは継続的な監視シナリオに最適であり、従来のしきい値ベースのバイアスメトリクスの統計的制限に悩まされず、結果ラベルを必要としない(実行時に利用できない可能性がある)。
QDDをFairCanaryと呼ばれる継続的モデル監視システムに組み込み、各予測毎に計算された既存の説明を再利用し、QDDバイアスメトリクスの説明を素早く計算します。
この最適化により、FairCanaryは、機能レベルのバイアス説明を生成しようとする以前の作業よりも桁違いに高速になる。
関連論文リスト
- Root Causing Prediction Anomalies Using Explainable AI [3.970146574042422]
本稿では,機械学習モデルにおける根源的性能劣化に対する説明可能なAI(XAI)の新たな応用法を提案する。
単一機能の破損は、カスケード機能、ラベル、コンセプトドリフトを引き起こす可能性がある。
我々は、パーソナライズされた広告に使用されるモデルの信頼性を向上させるために、この手法をうまく応用した。
論文 参考訳(メタデータ) (2024-03-04T19:38:50Z) - MLAD: A Unified Model for Multi-system Log Anomaly Detection [35.68387377240593]
複数のシステムにまたがる意味的関係推論を組み込んだ新しい異常検出モデルMLADを提案する。
具体的には、Sentence-bertを用いてログシーケンス間の類似性を捉え、それらを高次元の学習可能な意味ベクトルに変換する。
我々は,各キーワードのシーケンスにおける意義を識別し,マルチシステムデータセットの全体分布をモデル化するために,アテンション層の公式を改訂する。
論文 参考訳(メタデータ) (2024-01-15T12:51:13Z) - A hybrid feature learning approach based on convolutional kernels for
ATM fault prediction using event-log data [5.859431341476405]
イベントログデータから特徴を抽出するために,畳み込みカーネル(MiniROCKETとHYDRA)に基づく予測モデルを提案する。
提案手法は,実世界の重要な収集データセットに適用される。
このモデルは、ATMのタイムリーなメンテナンスにおいてオペレータをサポートするコンテナベースの意思決定支援システムに統合された。
論文 参考訳(メタデータ) (2023-05-17T08:55:53Z) - Uncovering the Missing Pattern: Unified Framework Towards Trajectory
Imputation and Prediction [60.60223171143206]
軌道予測は、観測されたシーケンスから実体運動や人間の行動を理解する上で重要な作業である。
現在の方法では、観測されたシーケンスが完了したと仮定し、欠落した値の可能性を無視する。
本稿では,グラフに基づく条件変動リカレントニューラルネットワーク (GC-VRNN) の統一フレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-28T14:27:27Z) - VisFIS: Visual Feature Importance Supervision with
Right-for-the-Right-Reason Objectives [84.48039784446166]
モデルFI監督は、VQAモデルの精度と、Right-to-the-Right-Reasonメトリクスの性能を有意義に向上させることができることを示す。
我々の最高のパフォーマンス手法であるVisual Feature Importance Supervision (VisFIS)は、ベンチマークVQAデータセットで強いベースラインを上回ります。
説明が妥当で忠実な場合には予測がより正確になる。
論文 参考訳(メタデータ) (2022-06-22T17:02:01Z) - Discovering Invariant Rationales for Graph Neural Networks [104.61908788639052]
グラフニューラルネットワーク(GNN)の固有の解釈可能性とは、入力グラフの特徴の小さなサブセットを見つけることである。
本稿では,本質的に解釈可能なGNNを構築するために,不変理性(DIR)を発見するための新しい戦略を提案する。
論文 参考訳(メタデータ) (2022-01-30T16:43:40Z) - Complex Event Forecasting with Prediction Suffix Trees: Extended
Technical Report [70.7321040534471]
複合イベント認識(CER)システムは、イベントのリアルタイムストリーム上のパターンを"即時"検出する能力によって、過去20年間に人気が高まっている。
このような現象が実際にCERエンジンによって検出される前に、パターンがいつ発生するかを予測する方法が不足している。
複雑なイベント予測の問題に対処しようとする形式的なフレームワークを提案する。
論文 参考訳(メタデータ) (2021-09-01T09:52:31Z) - Partially Hidden Markov Chain Linear Autoregressive model: inference and
forecasting [0.0]
体制の変化にともなう時系列は、エコノメトリー、金融、気象学といった領域に多くの関心を集めている。
i) そのような時系列に関連する状態過程は、部分的に隠れたマルコフチェーン(PHMC)によってモデル化される。
本研究では,存在時の観測状態を考慮した隠れ状態推定手法と予測関数を提案する。
論文 参考訳(メタデータ) (2021-02-24T22:12:05Z) - FiD-Ex: Improving Sequence-to-Sequence Models for Extractive Rationale
Generation [19.73842483996047]
本研究では,セq2seqモデルの欠点に対処するFiD-Exを開発した。
FiD-Exは、ERASER説明可能性ベンチマークの複数のタスクにおける説明基準とタスク精度の観点から、以前の作業よりも大幅に改善されている。
論文 参考訳(メタデータ) (2020-12-31T07:22:15Z) - Unsupervised Anomaly Detection with Adversarial Mirrored AutoEncoders [51.691585766702744]
本稿では,識別器のミラー化ワッサースタイン損失を利用して,よりセマンティックレベルの再構築を行う逆自動エンコーダの変種を提案する。
我々は,再建基準の代替として,異常スコアの代替尺度を提案した。
提案手法は,OOD検出ベンチマークにおける異常検出の最先端手法よりも優れている。
論文 参考訳(メタデータ) (2020-03-24T08:26:58Z) - Ambiguity in Sequential Data: Predicting Uncertain Futures with
Recurrent Models [110.82452096672182]
逐次データによる曖昧な予測を扱うために,Multiple hypothesis Prediction(MHP)モデルの拡張を提案する。
また、不確実性を考慮するのに適した曖昧な問題に対する新しい尺度も導入する。
論文 参考訳(メタデータ) (2020-03-10T09:15:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。