論文の概要: Hierarchically Regularized Deep Forecasting
- arxiv url: http://arxiv.org/abs/2106.07630v1
- Date: Mon, 14 Jun 2021 17:38:16 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-15 18:20:48.739360
- Title: Hierarchically Regularized Deep Forecasting
- Title(参考訳): 階層的正規化深部予測
- Authors: Biswajit Paria, Rajat Sen, Amr Ahmed, Abhimanyu Das
- Abstract要約: 本稿では,グローバルな時系列集合に沿って時系列を分解した階層予測のための新しい手法を提案する。
過去の手法とは異なり、我々の手法は時系列予測の一貫性を維持しつつ、推論時にスケーラブルである。
- 参考スコア(独自算出の注目度): 18.539846932184012
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Hierarchical forecasting is a key problem in many practical multivariate
forecasting applications - the goal is to simultaneously predict a large number
of correlated time series that are arranged in a pre-specified aggregation
hierarchy. The challenge is to exploit the hierarchical correlations to
simultaneously obtain good prediction accuracy for time series at different
levels of the hierarchy. In this paper, we propose a new approach for
hierarchical forecasting based on decomposing the time series along a global
set of basis time series and modeling hierarchical constraints using the
coefficients of the basis decomposition for each time series. Unlike past
methods, our approach is scalable at inference-time (forecasting for a specific
time series only needs access to its own data) while (approximately) preserving
coherence among the time series forecasts. We experiment on several publicly
available datasets and demonstrate significantly improved overall performance
on forecasts at different levels of the hierarchy, compared to existing
state-of-the-art hierarchical reconciliation methods.
- Abstract(参考訳): 階層的予測は、多くの実用的多変量予測アプリケーションにおいて重要な問題であり、その目標は、あらかじめ指定された集約階層に配置された大量の相関時系列を同時に予測することである。
課題は階層的相関を利用して、階層の異なるレベルにおける時系列の予測精度を向上させることである。
本稿では,時系列のグローバルな集合に沿った時系列の分解と,各時系列に対する基底分解係数を用いた階層的制約のモデル化に基づく階層的予測の新しい手法を提案する。
過去の手法とは異なり、このアプローチは推論時間(特定の時系列に対する予測は、自身のデータへのアクセスのみを必要とする)でスケーラブルであり、(ほぼ)時系列予測の中でコヒーレンスを維持する。
公開データセットをいくつか実験し,既存の階層的調整手法と比較して,階層の異なるレベルでの予測全体のパフォーマンスが著しく向上したことを示す。
関連論文リスト
- MGCP: A Multi-Grained Correlation based Prediction Network for Multivariate Time Series [54.91026286579748]
本稿では,マルチグラインド相関に基づく予測ネットワークを提案する。
予測性能を高めるために3段階の相関を同時に検討する。
注意機構に基づく予測器と条件判別器を用いて、粗い粒度の予測結果を最適化する。
論文 参考訳(メタデータ) (2024-05-30T03:32:44Z) - Loss Shaping Constraints for Long-Term Time Series Forecasting [79.3533114027664]
本稿では,長期時系列予測のための制約付き学習手法を提案する。
提案手法は, 予測ウィンドウ上でエラーを発生させながら, 時系列ベンチマークにおける競合平均性能を示すことを示すための, 実用的なプリマル・デュアルアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-02-14T18:20:44Z) - TimeSiam: A Pre-Training Framework for Siamese Time-Series Modeling [67.02157180089573]
時系列事前トレーニングは、最近、ラベルのコストを削減し、下流の様々なタスクに利益をもたらす可能性があるとして、広く注目を集めている。
本稿では,シームズネットワークに基づく時系列の簡易かつ効果的な自己教師型事前学習フレームワークとしてTimeSiamを提案する。
論文 参考訳(メタデータ) (2024-02-04T13:10:51Z) - Robust Detection of Lead-Lag Relationships in Lagged Multi-Factor Models [61.10851158749843]
データ固有のリード-ラグ関係を発見することで、重要な洞察を得ることができる。
階層化多要素モデルにおけるリードラグ関係のロバスト検出のためのクラスタリング駆動手法を開発した。
論文 参考訳(メタデータ) (2023-05-11T10:30:35Z) - Efficient probabilistic reconciliation of forecasts for real-valued and
count time series [0.840358257755792]
本研究では,任意の種類の予測分布を調整するための条件付けに基づく新しい手法を提案する。
次にBottom-Up Smplingと呼ばれる新しいアルゴリズムを導入し、再構成された分布から効率的にサンプリングする。
論文 参考訳(メタデータ) (2022-10-05T14:22:24Z) - MECATS: Mixture-of-Experts for Quantile Forecasts of Aggregated Time
Series [11.826510794042548]
我々はtexttMECATS という異種の専門家フレームワークを混合して導入する。
集約階層を通じて関連付けられた時系列の集合の値を同時に予測する。
異なる種類の予測モデルを個別の専門家として使用することで、各モデルの形式を対応する時系列の性質に合わせて調整することができる。
論文 参考訳(メタデータ) (2021-12-22T05:05:30Z) - Cluster-and-Conquer: A Framework For Time-Series Forecasting [94.63501563413725]
本稿では,高次元時系列データを予測するための3段階フレームワークを提案する。
当社のフレームワークは非常に汎用的で,各ステップで時系列予測やクラスタリングが利用可能です。
単純な線形自己回帰モデルでインスタンス化されると、いくつかのベンチマークデータセットで最先端の結果が得られる。
論文 参考訳(メタデータ) (2021-10-26T20:41:19Z) - Probabilistic Hierarchical Forecasting with Deep Poisson Mixtures [2.1670528702668648]
本稿では,信頼性の高い階層情報が存在する場合に,時系列の正確で一貫性のある確率予測を行う新しい手法を提案する。
私たちはそれをDeep Poisson Mixture Network(DPMN)と呼ぶ。
ニューラルネットワークと階層時系列構造の結合分布の統計モデルの組み合わせに依存している。
論文 参考訳(メタデータ) (2021-10-25T18:02:03Z) - Prediction of hierarchical time series using structured regularization
and its application to artificial neural networks [4.696083734269231]
本稿では,各上位時系列を適切な下位時系列を和らげて計算する階層時系列の予測について論じる。
このような階層的時系列の予測はコヒーレントでなければならない。つまり、上位級時系列の予測は対応する下位級時系列の予測の総和と等しい。
論文 参考訳(メタデータ) (2020-07-30T00:30:32Z) - Predicting Temporal Sets with Deep Neural Networks [50.53727580527024]
本稿では,時間集合予測のためのディープニューラルネットワークに基づく統合解を提案する。
ユニークな視点は、セットレベルの共起グラフを構築することで要素関係を学ぶことである。
我々は,要素や集合の時間依存性を適応的に学習するアテンションベースのモジュールを設計する。
論文 参考訳(メタデータ) (2020-06-20T03:29:02Z) - A machine learning approach for forecasting hierarchical time series [4.157415305926584]
階層時系列を予測するための機械学習手法を提案する。
予測整合は予測を調整し、階層をまたいで一貫性を持たせるプロセスである。
我々は、階層構造をキャプチャする情報を抽出するディープニューラルネットワークの能力を利用する。
論文 参考訳(メタデータ) (2020-05-31T22:26:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。