ResDepth: A Deep Prior For 3D Reconstruction From High-resolution
Satellite Images
- URL: http://arxiv.org/abs/2106.08107v1
- Date: Tue, 15 Jun 2021 12:51:28 GMT
- Title: ResDepth: A Deep Prior For 3D Reconstruction From High-resolution
Satellite Images
- Authors: Corinne Stucker, Konrad Schindler
- Abstract summary: We introduce ResDepth, a convolutional neural network that learns such an expressive geometric prior from example data.
In a series of experiments, we find that the proposed method consistently improves stereo DSMs both quantitatively and qualitatively.
We show that the prior encoded in the network weights captures meaningful geometric characteristics of urban design.
- Score: 28.975837416508142
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Modern optical satellite sensors enable high-resolution stereo reconstruction
from space. But the challenging imaging conditions when observing the Earth
from space push stereo matching to its limits. In practice, the resulting
digital surface models (DSMs) are fairly noisy and often do not attain the
accuracy needed for high-resolution applications such as 3D city modeling.
Arguably, stereo correspondence based on low-level image similarity is
insufficient and should be complemented with a-priori knowledge about the
expected surface geometry beyond basic local smoothness. To that end, we
introduce ResDepth, a convolutional neural network that learns such an
expressive geometric prior from example data. ResDepth refines an initial, raw
stereo DSM while conditioning the refinement on the images. I.e., it acts as a
smart, learned post-processing filter and can seamlessly complement any stereo
matching pipeline. In a series of experiments, we find that the proposed method
consistently improves stereo DSMs both quantitatively and qualitatively. We
show that the prior encoded in the network weights captures meaningful
geometric characteristics of urban design, which also generalize across
different districts and even from one city to another. Moreover, we demonstrate
that, by training on a variety of stereo pairs, ResDepth can acquire a
sufficient degree of invariance against variations in imaging conditions and
acquisition geometry.
Related papers
- NeuSD: Surface Completion with Multi-View Text-to-Image Diffusion [56.98287481620215]
We present a novel method for 3D surface reconstruction from multiple images where only a part of the object of interest is captured.
Our approach builds on two recent developments: surface reconstruction using neural radiance fields for the reconstruction of the visible parts of the surface, and guidance of pre-trained 2D diffusion models in the form of Score Distillation Sampling (SDS) to complete the shape in unobserved regions in a plausible manner.
arXiv Detail & Related papers (2023-12-07T19:30:55Z) - StableDreamer: Taming Noisy Score Distillation Sampling for Text-to-3D [88.66678730537777]
We present StableDreamer, a methodology incorporating three advances.
First, we formalize the equivalence of the SDS generative prior and a simple supervised L2 reconstruction loss.
Second, our analysis shows that while image-space diffusion contributes to geometric precision, latent-space diffusion is crucial for vivid color rendition.
arXiv Detail & Related papers (2023-12-02T02:27:58Z) - Learning Personalized High Quality Volumetric Head Avatars from
Monocular RGB Videos [47.94545609011594]
We propose a method to learn a high-quality implicit 3D head avatar from a monocular RGB video captured in the wild.
Our hybrid pipeline combines the geometry prior and dynamic tracking of a 3DMM with a neural radiance field to achieve fine-grained control and photorealism.
arXiv Detail & Related papers (2023-04-04T01:10:04Z) - $PC^2$: Projection-Conditioned Point Cloud Diffusion for Single-Image 3D
Reconstruction [97.06927852165464]
Reconstructing the 3D shape of an object from a single RGB image is a long-standing and highly challenging problem in computer vision.
We propose a novel method for single-image 3D reconstruction which generates a sparse point cloud via a conditional denoising diffusion process.
arXiv Detail & Related papers (2023-02-21T13:37:07Z) - MS-PS: A Multi-Scale Network for Photometric Stereo With a New
Comprehensive Training Dataset [0.0]
Photometric stereo (PS) problem consists in reconstructing the 3D-surface of an object.
We propose a multi-scale architecture for PS which, combined with a new dataset, yields state-of-the-art results.
arXiv Detail & Related papers (2022-11-25T14:01:54Z) - Learning Neural Radiance Fields from Multi-View Geometry [1.1011268090482573]
We present a framework, called MVG-NeRF, that combines Multi-View Geometry algorithms and Neural Radiance Fields (NeRF) for image-based 3D reconstruction.
NeRF has revolutionized the field of implicit 3D representations, mainly due to a differentiable rendering formulation that enables high-quality and geometry-aware novel view synthesis.
arXiv Detail & Related papers (2022-10-24T08:53:35Z) - Neural Implicit Surface Reconstruction using Imaging Sonar [38.73010653104763]
We present a technique for dense 3D reconstruction of objects using an imaging sonar, also known as forward-looking sonar (FLS)
Compared to previous methods that model the scene geometry as point clouds or volumetric grids, we represent geometry as a neural implicit function.
We perform experiments on real and synthetic datasets and show that our algorithm reconstructs high-fidelity surface geometry from multi-view FLS images at much higher quality than was possible with previous techniques and without suffering from their associated memory overhead.
arXiv Detail & Related papers (2022-09-17T02:23:09Z) - Neural Radiance Fields Approach to Deep Multi-View Photometric Stereo [103.08512487830669]
We present a modern solution to the multi-view photometric stereo problem (MVPS)
We procure the surface orientation using a photometric stereo (PS) image formation model and blend it with a multi-view neural radiance field representation to recover the object's surface geometry.
Our method performs neural rendering of multi-view images while utilizing surface normals estimated by a deep photometric stereo network.
arXiv Detail & Related papers (2021-10-11T20:20:03Z) - Photometric Multi-View Mesh Refinement for High-Resolution Satellite
Images [24.245977127434212]
State-of-the-art reconstruction methods typically generate 2.5D elevation data.
We present an approach to recover full 3D surface meshes from multi-view satellite imagery.
arXiv Detail & Related papers (2020-05-10T20:37:54Z) - Deep 3D Capture: Geometry and Reflectance from Sparse Multi-View Images [59.906948203578544]
We introduce a novel learning-based method to reconstruct the high-quality geometry and complex, spatially-varying BRDF of an arbitrary object.
We first estimate per-view depth maps using a deep multi-view stereo network.
These depth maps are used to coarsely align the different views.
We propose a novel multi-view reflectance estimation network architecture.
arXiv Detail & Related papers (2020-03-27T21:28:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.