論文の概要: Leveraging Probabilistic Circuits for Nonparametric Multi-Output
Regression
- arxiv url: http://arxiv.org/abs/2106.08687v1
- Date: Wed, 16 Jun 2021 10:49:55 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-17 17:17:02.246669
- Title: Leveraging Probabilistic Circuits for Nonparametric Multi-Output
Regression
- Title(参考訳): 非パラメトリックマルチ出力回帰のための確率回路の活用
- Authors: Zhongjie Yu, Mingye Zhu, Martin Trapp, Arseny Skryagin, Kristian
Kersting
- Abstract要約: GPエキスパートを用いた大規模マルチアウトプットレグレッションに対するエキスパートベースアプローチを提案する。
モデルでは,推論を正確に,効率的に行うことができることを示す。
- 参考スコア(独自算出の注目度): 15.52267516714806
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Inspired by recent advances in the field of expert-based approximations of
Gaussian processes (GPs), we present an expert-based approach to large-scale
multi-output regression using single-output GP experts. Employing a deeply
structured mixture of single-output GPs encoded via a probabilistic circuit
allows us to capture correlations between multiple output dimensions
accurately. By recursively partitioning the covariate space and the output
space, posterior inference in our model reduces to inference on single-output
GP experts, which only need to be conditioned on a small subset of the
observations. We show that inference can be performed exactly and efficiently
in our model, that it can capture correlations between output dimensions and,
hence, often outperforms approaches that do not incorporate inter-output
correlations, as demonstrated on several data sets in terms of the negative log
predictive density.
- Abstract(参考訳): ガウス過程 (GP) のエキスパートベース近似の分野における最近の進歩に触発されて, 単一出力GPエキスパートを用いた大規模マルチアウトプットレグレッションへの専門家ベースアプローチを提案する。
確率回路を介して符号化された単一出力GPの深い混合構造を用いることで、複数の出力次元間の相関関係を正確に捉えることができる。
共変量空間と出力空間を再帰的に分割することにより、我々のモデルにおける後部推論は、観測の小さな部分集合にのみ条件を付ける必要がある単出力GP専門家の推論に還元される。
本モデルでは,出力次元間の相関を捉えることができ,その結果,負のログ予測密度を用いて複数のデータセットで示されるように,出力間相関を含まない手法を上回ることが少なくない。
関連論文リスト
- Amortized Variational Inference for Deep Gaussian Processes [0.0]
ディープガウス過程(DGP)はガウス過程(GP)の多層一般化である
本稿では,DGPに対して,各観測を変動パラメータにマッピングする推論関数を学習するアモータライズされた変分推論を導入する。
本手法は, 計算コストの低い従来の手法よりも, 同様に, あるいはより優れた性能を示す。
論文 参考訳(メタデータ) (2024-09-18T20:23:27Z) - Scalable Multi-Output Gaussian Processes with Stochastic Variational Inference [2.1249213103048414]
遅延可変MOGP (LV-MOGP) は、データポイントが少ない新しい出力への効率的な一般化を可能にする。
LV-MOGPの複雑性は出力数とともに線形に増加する。
本稿では,LV-MOGPに対して,入力と出力の両方にミニバッチを適用可能な変分推論手法を提案する。
論文 参考訳(メタデータ) (2024-07-02T17:53:56Z) - Collaborative Heterogeneous Causal Inference Beyond Meta-analysis [68.4474531911361]
異種データを用いた因果推論のための協調的逆確率スコア推定器を提案する。
異質性の増加に伴うメタアナリシスに基づく手法に対して,本手法は有意な改善を示した。
論文 参考訳(メタデータ) (2024-04-24T09:04:36Z) - Matching Normalizing Flows and Probability Paths on Manifolds [57.95251557443005]
連続正規化フロー (Continuous Normalizing Flows, CNFs) は、常微分方程式(ODE)を解くことによって、先行分布をモデル分布に変換する生成モデルである。
我々は,CNFが生成する確率密度パスと目標確率密度パスとの間に生じる新たな分岐系であるPPDを最小化して,CNFを訓練することを提案する。
PPDの最小化によって得られたCNFは、既存の低次元多様体のベンチマークにおいて、その可能性とサンプル品質が得られることを示す。
論文 参考訳(メタデータ) (2022-07-11T08:50:19Z) - Non-Gaussian Gaussian Processes for Few-Shot Regression [71.33730039795921]
乱変数ベクトルの各成分上で動作し,パラメータを全て共有する可逆なODEベースのマッピングを提案する。
NGGPは、様々なベンチマークとアプリケーションに対する競合する最先端のアプローチよりも優れています。
論文 参考訳(メタデータ) (2021-10-26T10:45:25Z) - Examining and Combating Spurious Features under Distribution Shift [94.31956965507085]
我々は、最小限の統計量という情報理論の概念を用いて、ロバストで刺激的な表現を定義し、分析する。
入力分布のバイアスしか持たない場合でも、モデルはトレーニングデータから急激な特徴を拾い上げることができることを証明しています。
分析から着想を得た結果,グループDROは,グループ同士の相関関係を直接考慮しない場合に失敗する可能性が示唆された。
論文 参考訳(メタデータ) (2021-06-14T05:39:09Z) - Collaborative Nonstationary Multivariate Gaussian Process Model [2.362467745272567]
我々は、協調非定常ガウス過程モデル(CNMGP)と呼ばれる新しいモデルを提案する。
CNMGPは、出力が共通の入力セットを共有していないデータを、入力と出力のサイズに依存しない計算複雑性でモデル化することができる。
また,本モデルでは,出力毎に異なる時間変化相関を推定し,予測性能の向上を図っている。
論文 参考訳(メタデータ) (2021-06-01T18:25:22Z) - Probabilistic Circuits for Variational Inference in Discrete Graphical
Models [101.28528515775842]
変分法による離散的グラフィカルモデルの推論は困難である。
エビデンス・ロウアーバウンド(ELBO)を推定するためのサンプリングに基づく多くの手法が提案されている。
Sum Product Networks (SPN) のような確率的回路モデルのトラクタビリティを活用する新しい手法を提案する。
選択的SPNが表現的変動分布として適していることを示し、対象モデルの対数密度が重み付けされた場合、対応するELBOを解析的に計算可能であることを示す。
論文 参考訳(メタデータ) (2020-10-22T05:04:38Z) - Deep Sigma Point Processes [22.5396672566053]
ディープガウス過程(DGP)の構成構造から着想を得たパラメトリックモデルのクラスを導入する。
ディープシグマポイントプロセス(DSPP)は、カーネル基底関数によって制御されるミニバッチトレーニングや予測不確実性を含む、(可変)DGPの魅力的な特徴の多くを保持している。
論文 参考訳(メタデータ) (2020-02-21T03:40:35Z) - Conditional Deep Gaussian Processes: multi-fidelity kernel learning [6.599344783327053]
固定された低忠実度データにより遅延GPを直接支持する条件付きDGPモデルを提案する。
合成および高次元データを用いた実験は、他の多次元回帰法と同等の性能を示す。
低忠実度データと階層DGP構造により、実効カーネルは真関数の帰納バイアスを符号化する。
論文 参考訳(メタデータ) (2020-02-07T14:56:11Z) - Learning Likelihoods with Conditional Normalizing Flows [54.60456010771409]
条件正規化フロー(CNF)はサンプリングと推論において効率的である。
出力空間写像に対する基底密度が入力 x 上で条件づけられた CNF について、条件密度 p(y|x) をモデル化する。
論文 参考訳(メタデータ) (2019-11-29T19:17:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。