論文の概要: Collaborative Nonstationary Multivariate Gaussian Process Model
- arxiv url: http://arxiv.org/abs/2106.00719v1
- Date: Tue, 1 Jun 2021 18:25:22 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-03 14:43:41.574977
- Title: Collaborative Nonstationary Multivariate Gaussian Process Model
- Title(参考訳): 協調型非定常多変量ガウス過程モデル
- Authors: Rui Meng, Herbie Lee, Kristofer Bouchard
- Abstract要約: 我々は、協調非定常ガウス過程モデル(CNMGP)と呼ばれる新しいモデルを提案する。
CNMGPは、出力が共通の入力セットを共有していないデータを、入力と出力のサイズに依存しない計算複雑性でモデル化することができる。
また,本モデルでは,出力毎に異なる時間変化相関を推定し,予測性能の向上を図っている。
- 参考スコア(独自算出の注目度): 2.362467745272567
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Currently, multi-output Gaussian process regression models either do not
model nonstationarity or are associated with severe computational burdens and
storage demands. Nonstationary multi-variate Gaussian process models (NMGP) use
a nonstationary covariance function with an input-dependent linear model of
coregionalisation to jointly model input-dependent correlation, scale, and
smoothness of outputs. Variational sparse approximation relies on inducing
points to enable scalable computations. Here, we take the best of both worlds:
considering an inducing variable framework on the underlying latent functions
in NMGP, we propose a novel model called the collaborative nonstationary
Gaussian process model(CNMGP). For CNMGP, we derive computationally tractable
variational bounds amenable to doubly stochastic variational inference.
Together, this allows us to model data in which outputs do not share a common
input set, with a computational complexity that is independent of the size of
the inputs and outputs. We illustrate the performance of our method on
synthetic data and three real datasets and show that our model generally
pro-vides better predictive performance than the state-of-the-art, and also
provides estimates of time-varying correlations that differ across outputs.
- Abstract(参考訳): 現在、マルチ出力ガウス過程回帰モデルは非定常性をモデル化しないか、あるいは厳しい計算負荷とストレージ要求に関連付けられている。
非定常多変量ガウス過程モデル (NMGP) は、入力依存線形モデルを持つ非定常共分散関数を用いて、入力依存相関、スケール、出力の滑らかさを共同でモデル化する。
変分スパース近似は、スケーラブルな計算を可能にするために点の誘導に依存する。
そこで我々は,NMGPにおける潜在関数の変動フレームワークを誘導することを考えると,協調的非定常ガウス過程モデル(CNMGP)と呼ばれる新しいモデルを提案する。
cnmgpでは, 2倍の確率的変分推論が可能な計算可能な変分境界を導出する。
これにより、出力が共通の入力セットを共有していないデータを、入力と出力のサイズに依存しない計算複雑性でモデル化することができる。
本稿では,合成データと3つの実データを用いた手法の性能を概ね示し,そのモデルが概して最先端の予測性能よりも優れた予測性能を示すとともに,出力間で異なる時間変動相関の見積もりを提供する。
関連論文リスト
- Scalable Multi-Output Gaussian Processes with Stochastic Variational Inference [2.1249213103048414]
遅延可変MOGP (LV-MOGP) は、データポイントが少ない新しい出力への効率的な一般化を可能にする。
LV-MOGPの複雑性は出力数とともに線形に増加する。
本稿では,LV-MOGPに対して,入力と出力の両方にミニバッチを適用可能な変分推論手法を提案する。
論文 参考訳(メタデータ) (2024-07-02T17:53:56Z) - Preventing Model Collapse in Gaussian Process Latent Variable Models [11.45681373843122]
本稿では,線形フーリエVMのレンズによるモデル崩壊に対する射影分散の影響を理論的に検討する。
我々は、スペクトル混合(SM)カーネルと微分可能乱数特徴(RFF)カーネル近似を統合することにより、カーネルの柔軟性が不十分なため、モデル崩壊に取り組む。
提案したVMは、アドバイスRFLVMと呼ばれ、さまざまなデータセットで評価され、さまざまな競合モデルよりも一貫して優れています。
論文 参考訳(メタデータ) (2024-04-02T06:58:41Z) - Fusion of Gaussian Processes Predictions with Monte Carlo Sampling [61.31380086717422]
科学と工学において、私たちはしばしば興味のある変数の正確な予測のために設計されたモデルで作業します。
これらのモデルが現実の近似であることを認識し、複数のモデルを同じデータに適用し、結果を統合することが望ましい。
論文 参考訳(メタデータ) (2024-03-03T04:21:21Z) - Sample Complexity Characterization for Linear Contextual MDPs [67.79455646673762]
文脈決定プロセス(CMDP)は、遷移カーネルと報酬関数がコンテキスト変数によってインデックス付けされた異なるMDPで時間とともに変化できる強化学習のクラスを記述する。
CMDPは、時間とともに変化する環境で多くの現実世界のアプリケーションをモデル化するための重要なフレームワークとして機能する。
CMDPを2つの線形関数近似モデルで検討する: 文脈変化表現とすべての文脈に対する共通線形重み付きモデルIと、すべての文脈に対する共通表現と文脈変化線形重み付きモデルIIである。
論文 参考訳(メタデータ) (2024-02-05T03:25:04Z) - Diffusion models for probabilistic programming [56.47577824219207]
拡散モデル変分推論(DMVI)は確率型プログラミング言語(PPL)における自動近似推論手法である
DMVIは実装が容易で、例えば正規化フローを用いた変分推論の欠点を伴わずに、PPLでヘイズルフリー推論が可能であり、基礎となるニューラルネットワークモデルに制約を課さない。
論文 参考訳(メタデータ) (2023-11-01T12:17:05Z) - Multi-Response Heteroscedastic Gaussian Process Models and Their
Inference [1.52292571922932]
本稿ではヘテロセダスティック共分散関数のモデリングのための新しいフレームワークを提案する。
後部モデルに近似し, 後部予測モデルを容易にするために, 変分推論を用いる。
提案するフレームワークは,幅広いアプリケーションに対して,堅牢で汎用的なツールを提供する。
論文 参考訳(メタデータ) (2023-08-29T15:06:47Z) - Heterogeneous Multi-Task Gaussian Cox Processes [61.67344039414193]
異種相関タスクを共同でモデル化するためのマルチタスクガウスコックスプロセスの新たな拡張を提案する。
MOGPは、分類、回帰、ポイントプロセスタスクの専用可能性のパラメータに先行して、異種タスク間の情報の共有を容易にする。
モデルパラメータを推定するための閉形式反復更新を実現する平均場近似を導出する。
論文 参考訳(メタデータ) (2023-08-29T15:01:01Z) - Scalable mixed-domain Gaussian process modeling and model reduction for longitudinal data [5.00301731167245]
混合領域共分散関数に対する基底関数近似スキームを導出する。
我々は,GPモデルの精度をランタイムのごく一部で正確に近似できることを示す。
また、より小さく、より解釈可能なモデルを得るためのスケーラブルなモデルリダクションワークフローを実証する。
論文 参考訳(メタデータ) (2021-11-03T04:47:37Z) - On MCMC for variationally sparse Gaussian processes: A pseudo-marginal
approach [0.76146285961466]
ガウス過程(GP)は、機械学習や統計学において強力なモデルを構築するために頻繁に用いられる。
本稿では,2重推定器による確率と大規模データセットの正確な推測と計算的ゲインを提供する擬似マージナル(PM)方式を提案する。
論文 参考訳(メタデータ) (2021-03-04T20:48:29Z) - Autoregressive Score Matching [113.4502004812927]
自動回帰条件スコアモデル(AR-CSM)を提案する。
AR-CSMモデルでは、このデータ分布とモデル分布のばらつきを効率的に計算し、最適化することができ、高価なサンプリングや対向訓練を必要としない。
本研究では,合成データに対する密度推定,画像生成,画像復調,暗黙エンコーダを用いた潜在変数モデルの訓練に応用できることを示す。
論文 参考訳(メタデータ) (2020-10-24T07:01:24Z) - Probabilistic Circuits for Variational Inference in Discrete Graphical
Models [101.28528515775842]
変分法による離散的グラフィカルモデルの推論は困難である。
エビデンス・ロウアーバウンド(ELBO)を推定するためのサンプリングに基づく多くの手法が提案されている。
Sum Product Networks (SPN) のような確率的回路モデルのトラクタビリティを活用する新しい手法を提案する。
選択的SPNが表現的変動分布として適していることを示し、対象モデルの対数密度が重み付けされた場合、対応するELBOを解析的に計算可能であることを示す。
論文 参考訳(メタデータ) (2020-10-22T05:04:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。