論文の概要: Learning Likelihoods with Conditional Normalizing Flows
- arxiv url: http://arxiv.org/abs/1912.00042v2
- Date: Sun, 12 Nov 2023 20:52:01 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-17 18:53:56.804067
- Title: Learning Likelihoods with Conditional Normalizing Flows
- Title(参考訳): 条件付き正規化流による学習可能性
- Authors: Christina Winkler, Daniel Worrall, Emiel Hoogeboom, Max Welling
- Abstract要約: 条件正規化フロー(CNF)はサンプリングと推論において効率的である。
出力空間写像に対する基底密度が入力 x 上で条件づけられた CNF について、条件密度 p(y|x) をモデル化する。
- 参考スコア(独自算出の注目度): 54.60456010771409
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Normalizing Flows (NFs) are able to model complicated distributions p(y) with
strong inter-dimensional correlations and high multimodality by transforming a
simple base density p(z) through an invertible neural network under the change
of variables formula. Such behavior is desirable in multivariate structured
prediction tasks, where handcrafted per-pixel loss-based methods inadequately
capture strong correlations between output dimensions. We present a study of
conditional normalizing flows (CNFs), a class of NFs where the base density to
output space mapping is conditioned on an input x, to model conditional
densities p(y|x). CNFs are efficient in sampling and inference, they can be
trained with a likelihood-based objective, and CNFs, being generative flows, do
not suffer from mode collapse or training instabilities. We provide an
effective method to train continuous CNFs for binary problems and in
particular, we apply these CNFs to super-resolution and vessel segmentation
tasks demonstrating competitive performance on standard benchmark datasets in
terms of likelihood and conventional metrics.
- Abstract(参考訳): 正規化フロー(NF)は複雑な分布をモデル化できる。
(y)単純基底密度p変換による強次元間相関と高多重性
(z)変数式の変化に基づく可逆ニューラルネットワークを経由する。
このような振る舞いは多変量構造予測タスクにおいて望ましいものであり、手作りのピクセルごとの損失ベース手法は出力次元間の強い相関を不適切に捉えている。
本稿では、入力x上で出力空間マッピングの基底密度が条件付けされたnfsのクラスである条件正規化フロー(cnfs)について、条件密度p(y|x)をモデル化する。
cnfはサンプリングや推論において効率的であり、確率に基づく目標で訓練することができ、cnfは生成フローであり、モード崩壊やトレーニング不安定に苦しむことはない。
我々は,バイナリ問題に対して連続cnfsを訓練する効果的な方法を提案し,特に,標準ベンチマークデータセットにおける競合性能を示す超解像および容器分割タスクに,確率的および従来的指標を用いてこれらのcnfを適用した。
関連論文リスト
- Entropy-Informed Weighting Channel Normalizing Flow [7.751853409569806]
正規化および機能依存の$mathttShuffle$演算を提案し,それをバニラマルチスケールアーキテクチャに統合する。
このような操作はエントロピー増加方向の変数を誘導するので、$mathttShuffle$演算をemphEntropy-Informed Weighting Channel Normalizing Flow (EIW-Flow)と呼ぶNFを参照する。
論文 参考訳(メタデータ) (2024-07-06T04:46:41Z) - Transformer Neural Autoregressive Flows [48.68932811531102]
正規化フロー(NF)を用いて密度推定を行う。
我々はトランスフォーマーニューラルオートレグレッシブフロー(T-NAF)と呼ばれる新しいタイプのニューラルフローを定義するためにトランスフォーマーを利用する新しい解を提案する。
論文 参考訳(メタデータ) (2024-01-03T17:51:16Z) - Taming Hyperparameter Tuning in Continuous Normalizing Flows Using the
JKO Scheme [60.79981399724534]
正規化フロー (NF) は、選択された確率分布を正規分布に変換する写像である。
OTベースのCNFを$alpha$をチューニングすることなく解くアルゴリズムであるJKO-Flowを提案する。
論文 参考訳(メタデータ) (2022-11-30T05:53:21Z) - Normalizing Flow with Variational Latent Representation [20.038183566389794]
正規化フロー(NF)の実用性能を向上させるため,変分潜在表現に基づく新しいフレームワークを提案する。
この考え方は、標準正規潜在変数をより一般的な潜在変数に置き換えることであり、変分ベイズを通して共同で学習される。
得られた手法は,複数のモードでデータ分布を生成する標準的な正規化フローアプローチよりもはるかに強力である。
論文 参考訳(メタデータ) (2022-11-21T16:51:49Z) - Validation Diagnostics for SBI algorithms based on Normalizing Flows [55.41644538483948]
本研究は,NFに基づく多次元条件(後)密度推定器の検証診断を容易にすることを提案する。
また、局所的な一貫性の結果に基づいた理論的保証も提供する。
この作業は、より良い特定モデルの設計を支援したり、新しいSBIアルゴリズムの開発を促進するのに役立つだろう。
論文 参考訳(メタデータ) (2022-11-17T15:48:06Z) - Flow Matching for Generative Modeling [44.66897082688762]
フローマッチングは、連続正規化フロー(CNF)のトレーニングのためのシミュレーション不要なアプローチである
拡散経路を持つFMを用いることで、より堅牢で安定した拡散モデルの代替となることが判明した。
ImageNet上でFlow Matchingを使用したCNFのトレーニングは、可能性とサンプル品質の両方の観点から最先端のパフォーマンスをもたらす。
論文 参考訳(メタデータ) (2022-10-06T08:32:20Z) - Matching Normalizing Flows and Probability Paths on Manifolds [57.95251557443005]
連続正規化フロー (Continuous Normalizing Flows, CNFs) は、常微分方程式(ODE)を解くことによって、先行分布をモデル分布に変換する生成モデルである。
我々は,CNFが生成する確率密度パスと目標確率密度パスとの間に生じる新たな分岐系であるPPDを最小化して,CNFを訓練することを提案する。
PPDの最小化によって得られたCNFは、既存の低次元多様体のベンチマークにおいて、その可能性とサンプル品質が得られることを示す。
論文 参考訳(メタデータ) (2022-07-11T08:50:19Z) - Discretely Indexed Flows [1.0079626733116611]
本稿では,変分推定問題の解法として離散インデックスフロー(DIF)を提案する。
DIFは正規化フロー(NF)の拡張として構築され、決定論的輸送は離散的にインデックス付けされる。
これらは、トラクタブル密度と単純なサンプリングスキームの両方の利点があり、変分推論(VI)と変分密度推定(VDE)の二重問題に利用できる。
論文 参考訳(メタデータ) (2022-04-04T10:13:43Z) - Efficient CDF Approximations for Normalizing Flows [64.60846767084877]
正規化フローの微分同相性に基づいて、閉領域上の累積分布関数(CDF)を推定する。
一般的なフローアーキテクチャとUCIデータセットに関する実験は,従来の推定器と比較して,サンプル効率が著しく向上したことを示している。
論文 参考訳(メタデータ) (2022-02-23T06:11:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。