論文の概要: Predicting crop yields with little ground truth: A simple statistical
model for in-season forecasting
- arxiv url: http://arxiv.org/abs/2106.08720v1
- Date: Wed, 16 Jun 2021 11:44:37 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-17 17:16:46.753412
- Title: Predicting crop yields with little ground truth: A simple statistical
model for in-season forecasting
- Title(参考訳): 根底真理の少ない作物収量の予測:シーズン内予測のための簡易統計モデル
- Authors: Nemo Semret
- Abstract要約: シーズン内収量予測のための完全自動モデルを提案する。
我々のアプローチは主に衛星データに依存しており、簡単な回帰モデルと組み合わせた注意深い特徴工学が特徴である。
10種類の異なる品種に施すと,9ヶ月の予測では5%~10%,3ヶ月の予測では7%~14%のRMSEが得られる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We present a fully automated model for in-season crop yield prediction,
designed to work where there is a dearth of sub-national "ground truth"
information. Our approach relies primarily on satellite data and is
characterized by careful feature engineering combined with a simple regression
model. As such, it can work almost anywhere in the world. Applying it to 10
different crop-country pairs (5 cereals -- corn, wheat, sorghum, barley and
millet, in 2 countries -- Ethiopia and Kenya), we achieve RMSEs of 5\%-10\% for
predictions 9 months into the year, and 7\%-14\% for predictions 3 months into
the year. The model outputs daily forecasts for the final yield of the current
year. It is trained using approximately 4 million data points for each
crop-country pair. These consist of: historical country-level annual yields,
crop calendars, crop cover, NDVI, temperature, rainfall, and
evapotransporation.
- Abstract(参考訳): 我々は,サブナショナルな「地下真理」情報が存在する場所で機能するように設計された,シーズン内収量予測の完全自動化モデルを提案する。
我々のアプローチは主に衛星データに依存しており、簡単な回帰モデルと組み合わせた注意深い特徴工学が特徴である。
そのため、世界中のほぼどこでも使える。
10種(トウモロコシ、小麦、ソルガム、大麦、ミレットの5穀類、エチオピア、ケニアの2か国)に適用すると、毎年9ヶ月の予測では5\%-10\%、年間3ヶ月の予測では7\%-14\%のRMSEが得られる。
モデルは、今年の最終利回りの日次予測を出力します。
各収穫国ごとに約400万のデータポイントを使用してトレーニングされる。
これらは、歴史的国レベルの年収、収穫の暦、作物の被覆、NDVI、温度、降雨、蒸発散である。
関連論文リスト
- DUNE: A Machine Learning Deep UNet++ based Ensemble Approach to Monthly, Seasonal and Annual Climate Forecasting [0.0]
Deep UNet++ベースの新しいニューラルネットワークであるEnsemble(DUNE)が導入されている。
年間平均気温は2メートル(T2m)、海面温度(SST)である。
これらの予測は、すべての領域に対する持続性、気候学、多重線形回帰よりも優れる。
論文 参考訳(メタデータ) (2024-08-12T16:22:30Z) - Generative weather for improved crop model simulations [0.0]
本稿では,長期気象予報のための生成モデルを構築するための新しい手法を提案する。
その結果,従来の方法よりも顕著な改善が見られた。
個別の作物モデル作成者がこの問題にこの手法を適用し始めるためには、技術的詳細を慎重に説明する。
論文 参考訳(メタデータ) (2024-03-31T02:03:28Z) - Innovations in Agricultural Forecasting: A Multivariate Regression Study on Global Crop Yield Prediction [0.0]
本研究は,27年間で開発途上国37カ国の収量予測に6つの回帰モデルを適用した。
4つの主要な訓練パラメータ, 殺虫剤 (tonnes), 降雨剤 (mm), 温度 (Celsius), 収量 (hg/ha) が与えられた結果, 我々のランダムフォレスト回帰モデルは0.94の判定係数 (r2) を達成した。
論文 参考訳(メタデータ) (2023-12-04T18:45:28Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
農業計画や保険には1年前から予測される高品質の干ばつが不可欠だ。
私たちは、体系的なエンドツーエンドアプローチを採用するエンドツーエンドアプローチを導入することで、干ばつデータに取り組みます。
主な発見は、TransformerモデルであるEarthFormerが、正確な短期(最大6ヶ月)の予測を行う際の例外的なパフォーマンスである。
論文 参考訳(メタデータ) (2023-09-12T13:28:06Z) - HarvestNet: A Dataset for Detecting Smallholder Farming Activity Using
Harvest Piles and Remote Sensing [50.4506590177605]
HarvestNetは、2020-2023年のエチオピアのティグレイとアムハラの農場の存在をマッピングするためのデータセットである。
本研究は,多くの小作システムの特徴ある収穫杭の検出に基づく新しい手法を提案する。
本研究は, 農作物のリモートセンシングが, 食品の安全地帯において, よりタイムリーかつ正確な農地評価に寄与することが示唆された。
論文 参考訳(メタデータ) (2023-08-23T11:03:28Z) - GraphCast: Learning skillful medium-range global weather forecasting [107.40054095223779]
我々は、再分析データから直接トレーニングできる「GraphCast」と呼ばれる機械学習ベースの手法を導入する。
全世界で10日以上、0.25度で、数百の気象変動を1分以内で予測する。
我々は,GraphCastが1380の検証対象の90%において,最も正確な運用決定システムよりも優れていることを示す。
論文 参考訳(メタデータ) (2022-12-24T18:15:39Z) - Strict baselines for Covid-19 forecasting and ML perspective for USA and
Russia [105.54048699217668]
Covid-19は、2年間にわたって蓄積されたデータセットを収集し、予測分析に使用できるようにする。
本研究は、米国とロシアの2カ国の地域データに基づいて、Covid-19の拡散のダイナミクスを予測するための様々な種類の方法に関する一貫した研究結果である。
論文 参考訳(メタデータ) (2022-07-15T18:21:36Z) - A Deep Neural Network Approach for Crop Selection and Yield Prediction
in Bangladesh [0.0]
本稿では,最小コストと労力で作物の選別と収量予測の最良の方法を示す。
本稿では,農業作物の選択と収量予測にディープニューラルネットワークを用いることを提案する。
論文 参考訳(メタデータ) (2021-08-06T22:25:46Z) - Learning from Data to Optimize Control in Precision Farming [77.34726150561087]
特集は、統計的推論、機械学習、精密農業のための最適制御における最新の発展を示す。
衛星の位置決めとナビゲーションとそれに続くInternet-of-Thingsは、リアルタイムで農業プロセスの最適化に使用できる膨大な情報を生成する。
論文 参考訳(メタデータ) (2020-07-07T12:44:17Z) - A generative adversarial network approach to (ensemble) weather
prediction [91.3755431537592]
本研究では,500hPaの圧力レベル,2m温度,24時間の総降水量を予測するために,条件付き深部畳み込み生成対向ネットワークを用いた。
提案されたモデルは、2019年に関連する気象分野を予測することを目的として、2015年から2018年までの4年間のERA5の再分析データに基づいて訓練されている。
論文 参考訳(メタデータ) (2020-06-13T20:53:17Z) - Forecasting Corn Yield with Machine Learning Ensembles [2.9005223064604078]
本稿では,米コーンベルト州3州(イリノイ州,インディアナ州,アイオワ州)でトウモロコシの収量を予測するための機械学習ベースのフレームワークを提供する。
いくつかのアンサンブルモデルは、ブロックされたシーケンシャルプロシージャを使用して、バッグ外予測を生成する。
その結果,基本学習者の重み付き平均に基づくアンサンブルモデルは,個々のモデルよりも優れていた。
論文 参考訳(メタデータ) (2020-01-18T03:55:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。