論文の概要: Trilateral Attention Network for Real-time Medical Image Segmentation
- arxiv url: http://arxiv.org/abs/2106.09201v1
- Date: Thu, 17 Jun 2021 01:46:33 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-19 06:20:40.390330
- Title: Trilateral Attention Network for Real-time Medical Image Segmentation
- Title(参考訳): リアルタイム医用画像分割のための三方向注意ネットワーク
- Authors: Ghada Zamzmi, Vandana Sachdev, and Sameer Antani
- Abstract要約: 本稿では,医用画像のリアルタイム検出とセグメンテーションを行うために,Trilateral Attention Network (TaNet) と呼ばれるエンドツーエンドネットワークを提案する。
TaNetは、領域ローカライゼーションのためのモジュールと、1)手作りの畳み込みカーネルを持つ手作り経路、2)正規の畳み込みカーネルを持つ詳細経路、3)受容領域を拡大するグローバルパスの3つのセグメンテーション経路を持つ。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate segmentation of medical images into anatomically meaningful regions
is critical for the extraction of quantitative indices or biomarkers. The
common pipeline for segmentation comprises regions of interest detection stage
and segmentation stage, which are independent of each other and typically
performed using separate deep learning networks. The performance of the
segmentation stage highly relies on the extracted set of spatial features and
the receptive fields. In this work, we propose an end-to-end network, called
Trilateral Attention Network (TaNet), for real-time detection and segmentation
in medical images. TaNet has a module for region localization, and three
segmentation pathways: 1) handcrafted pathway with hand-designed convolutional
kernels, 2) detail pathway with regular convolutional kernels, and 3) a global
pathway to enlarge the receptive field. The first two pathways encode rich
handcrafted and low-level features extracted by hand-designed and regular
kernels while the global pathway encodes high-level context information. By
jointly training the network for localization and segmentation using different
sets of features, TaNet achieved superior performance, in terms of accuracy and
speed, when evaluated on an echocardiography dataset for cardiac segmentation.
The code and models will be made publicly available in TaNet Github page.
- Abstract(参考訳): 医学画像の解剖学的意義のある領域への正確なセグメンテーションは、定量的指標やバイオマーカーの抽出に重要である。
セグメンテーションのための共通パイプラインは、興味検出段階とセグメンテーション段階の領域を含み、互いに独立し、通常、別々のディープラーニングネットワークを使用して実行される。
セグメンテーションステージの性能は,抽出した空間的特徴セットと受容場に大きく依存する。
本稿では,医療画像のリアルタイム検出とセグメンテーションのためのエンドツーエンドネットワークであるtrilateral attention network (tanet)を提案する。
TaNetは、領域ローカライゼーションのためのモジュールと、1)手作りの畳み込みカーネルを持つ手作り経路、2)正規の畳み込みカーネルを持つ詳細経路、3)受容領域を拡大するグローバルパスの3つのセグメンテーション経路を持つ。
最初の2つの経路は、手作りカーネルとレギュラーカーネルによって抽出されたリッチな低レベルの特徴をエンコードし、グローバルパスは高レベルのコンテキスト情報をエンコードする。
異なる特徴セットを用いてネットワークをローカライズとセグメンテーションのために共同でトレーニングすることにより、心臓セグメンテーションのための心エコーデータセットで評価すると、精度と速度の点で優れたパフォーマンスを実現した。
コードとモデルは、TaNet Githubのページで公開される。
関連論文リスト
- Self-Supervised Correction Learning for Semi-Supervised Biomedical Image
Segmentation [84.58210297703714]
半教師付きバイオメディカルイメージセグメンテーションのための自己教師付き補正学習パラダイムを提案する。
共有エンコーダと2つの独立デコーダを含むデュアルタスクネットワークを設計する。
異なるタスクのための3つの医用画像分割データセットの実験により,本手法の優れた性能が示された。
論文 参考訳(メタデータ) (2023-01-12T08:19:46Z) - UNet#: A UNet-like Redesigning Skip Connections for Medical Image
Segmentation [13.767615201220138]
シンボル#に類似した形状のUNet-sharp(UNet#)という,高密度スキップ接続とフルスケールスキップ接続を組み合わせた新しいネットワーク構造を提案する。
提案されたUNet#は、デコーダサブネットワークで異なるスケールの機能マップを集約し、詳細な詳細と大まかなセマンティクスをフルスケールから取得することができる。
論文 参考訳(メタデータ) (2022-05-24T03:40:48Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
本稿では,2ストリームグラフ畳み込みネットワーク(TSGCN)を提案する。
TSGCNは3次元歯(表面)セグメンテーションにおいて最先端の方法よりも優れています。
論文 参考訳(メタデータ) (2022-04-19T10:41:09Z) - Multi-organ Segmentation Network with Adversarial Performance Validator [10.775440368500416]
本稿では,2次元から3次元のセグメンテーションフレームワークに対向的な性能検証ネットワークを導入する。
提案したネットワークは, 2次元粗い結果から3次元高品質なセグメンテーションマスクへの変換を行い, 共同最適化によりセグメンテーション精度が向上する。
NIH膵分節データセットの実験では、提案したネットワークが小臓器分節の最先端の精度を達成し、過去の最高性能を上回った。
論文 参考訳(メタデータ) (2022-04-16T18:00:29Z) - Point-Unet: A Context-aware Point-based Neural Network for Volumetric
Segmentation [18.81644604997336]
本稿では,3次元点雲による深層学習の効率をボリュームセグメンテーションに組み込む新しい手法であるPoint-Unetを提案する。
私たちのキーとなるアイデアは、まず注意確率マップを学習することで、ボリュームに対する関心領域を予測することです。
異なるメトリクスに関する包括的なベンチマークでは、私たちのコンテキスト認識のPoint-UnetがSOTAのボクセルベースネットワークより優れていることが示されている。
論文 参考訳(メタデータ) (2022-03-16T22:02:08Z) - Residual Moment Loss for Medical Image Segmentation [56.72261489147506]
位置情報は,対象物体の多様体構造を捉えた深層学習モデルに有効であることが証明された。
既存のほとんどの手法は、ネットワークが学習するために、位置情報を暗黙的にエンコードする。
セグメント化対象の位置情報を明示的に埋め込むために,新しい損失関数,すなわち残差モーメント(RM)損失を提案する。
論文 参考訳(メタデータ) (2021-06-27T09:31:49Z) - Semi-supervised, Topology-Aware Segmentation of Tubular Structures from
Live Imaging 3D Microscopy [6.2651370198971295]
本稿では, バイオメディカルイメージングにおける2つの問題に対処する: セグメンテーションのトポロジ的一貫性, 限定アノテーション。
本研究では, 予測された真理セグメントと地上の真理セグメントの位相的および幾何学的整合性を測定するトポロジカルスコアを提案する。
本研究は, 乳房内管状構造を集束顕微鏡で観察し, 本研究の意義を検証した。
論文 参考訳(メタデータ) (2021-05-20T13:35:44Z) - Three Ways to Improve Semantic Segmentation with Self-Supervised Depth
Estimation [90.87105131054419]
ラベルなし画像列からの自己教師付き単眼深度推定により強化された半教師付きセマンティックセマンティックセマンティックセマンティクスのフレームワークを提案する。
提案されたモデルをCityscapesデータセット上で検証する。
論文 参考訳(メタデータ) (2020-12-19T21:18:03Z) - Weakly Supervised Deep Nuclei Segmentation Using Partial Points
Annotation in Histopathology Images [51.893494939675314]
本稿では,部分点アノテーションに基づく弱教師付きセグメンテーションフレームワークを提案する。
本手法は, 完全教師付き手法や最先端手法と比較して, 競争性能を向上できることを示す。
論文 参考訳(メタデータ) (2020-07-10T15:41:29Z) - MetricUNet: Synergistic Image- and Voxel-Level Learning for Precise CT
Prostate Segmentation via Online Sampling [66.01558025094333]
本稿では,前立腺領域を高速に局在させる第1段階と,前立腺領域を正確に区分する第2段階の2段階のフレームワークを提案する。
マルチタスクネットワークにおけるボクセルワイドサンプリングによる新しいオンラインメトリック学習モジュールを提案する。
本手法は,従来のクロスエントロピー学習法やDice損失学習法と比較して,より代表的なボクセルレベルの特徴を効果的に学習することができる。
論文 参考訳(メタデータ) (2020-05-15T10:37:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。