論文の概要: Few-Shot Vision-Language Action-Incremental Policy Learning
- arxiv url: http://arxiv.org/abs/2504.15517v1
- Date: Tue, 22 Apr 2025 01:30:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-01 00:48:22.878685
- Title: Few-Shot Vision-Language Action-Incremental Policy Learning
- Title(参考訳): 少数ショットビジョン・ランゲージアクション・インクリメンタル・ポリシー学習
- Authors: Mingchen Song, Xiang Deng, Guoqiang Zhong, Qi Lv, Jia Wan, Yinchuan Li, Jianye Hao, Weili Guan,
- Abstract要約: トランスフォーマーに基づくロボット操作手法は,多視点空間表現と言語命令を用いてロボットの運動軌跡を学習する。
既存のメソッドには、いくつかのデモだけで新しいタスクを継続的に学習する能力がない。
我々はこれらの問題に対処するタスク-prOmpt graPh evolutIon poliCy (TOPIC) を開発した。
- 参考スコア(独自算出の注目度): 55.07841353049953
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, Transformer-based robotic manipulation methods utilize multi-view spatial representations and language instructions to learn robot motion trajectories by leveraging numerous robot demonstrations. However, the collection of robot data is extremely challenging, and existing methods lack the capability for continuous learning on new tasks with only a few demonstrations. In this paper, we formulate these challenges as the Few-Shot Action-Incremental Learning (FSAIL) task, and accordingly design a Task-prOmpt graPh evolutIon poliCy (TOPIC) to address these issues. Specifically, to address the data scarcity issue in robotic imitation learning, TOPIC learns Task-Specific Prompts (TSP) through the deep interaction of multi-modal information within few-shot demonstrations, thereby effectively extracting the task-specific discriminative information. On the other hand, to enhance the capability for continual learning on new tasks and mitigate the issue of catastrophic forgetting, TOPIC adopts a Continuous Evolution Strategy (CES). CES leverages the intrinsic relationships between tasks to construct a task relation graph, which effectively facilitates the adaptation of new tasks by reusing skills learned from previous tasks. TOPIC pioneers few-shot continual learning in the robotic manipulation task, and extensive experimental results demonstrate that TOPIC outperforms state-of-the-art baselines by over 26$\%$ in success rate, significantly enhancing the continual learning capabilities of existing Transformer-based policies.
- Abstract(参考訳): 近年,トランスフォーマーを用いたロボット操作手法では,多視点空間表現と言語指示を用いて,ロボットの動作軌跡を学習する。
しかし、ロボットデータの収集は非常に困難であり、既存の手法では数回のデモンストレーションで新しいタスクを継続的に学習する能力が欠如している。
本稿では、これらの課題をFSAIL(Few-Shot Action-Incremental Learning)タスクとして定式化し、それに対応するためにTask-prOmpt graPh evolutIon poliCy(TOPIC)を設計する。
具体的には、ロボット模倣学習におけるデータ不足問題に対処するため、TOPICは、数発のデモでマルチモーダル情報の深い相互作用を通じてタスク特化プロンプト(TSP)を学習し、タスク固有識別情報を効果的に抽出する。
一方、新しいタスクの継続的な学習能力を高め、破滅的な忘れの問題を緩和するために、TOPICは継続的進化戦略(CES)を採用している。
CESは、タスク間の本質的な関係を利用してタスク関係グラフを構築し、以前のタスクから学んだスキルを再利用することによって、新しいタスクの適応を効果的に促進する。
TOPICはロボット操作タスクにおける数ショット連続学習の先駆者であり、広範な実験結果から、TOPICが最先端のベースラインを26$\%以上の成功率で上回り、既存のTransformerベースのポリシーの継続的な学習能力を大幅に向上させることを示した。
関連論文リスト
- Mastering Robot Manipulation with Multimodal Prompts through Pretraining and Multi-task Fine-tuning [49.92517970237088]
我々はマルチモーダルなプロンプトを理解するためにロボットを訓練する問題に取り組む。
このようなタスクは、視覚と言語信号の相互接続と相補性を理解するロボットの能力にとって大きな課題となる。
マルチモーダルプロンプトを用いてロボット操作を行うためのポリシーを学習する効果的なフレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-14T22:24:58Z) - Continual Robot Learning using Self-Supervised Task Inference [19.635428830237842]
新しいタスクを継続的に学習するための自己教師型タスク推論手法を提案する。
我々は、行動マッチング型自己教師型学習目標を用いて、新しいタスク推論ネットワーク(TINet)を訓練する。
マルチタスクポリシはTINet上に構築され、タスクよりもパフォーマンスを最適化するために強化学習でトレーニングされている。
論文 参考訳(メタデータ) (2023-09-10T09:32:35Z) - Active Task Randomization: Learning Robust Skills via Unsupervised
Generation of Diverse and Feasible Tasks [37.73239471412444]
我々は、教師なしのトレーニングタスクの生成を通じて、堅牢なスキルを学ぶアプローチであるActive Task Randomization (ATR)を導入する。
ATRは、タスクの多様性と実現可能性のバランスをとることで、堅牢なスキルを学ぶために、初期環境状態と操作目標からなる適切なタスクを選択する。
本研究では,視覚的入力に基づく逐次操作問題の解決のために,タスクプランナが学習スキルを構成することを実証する。
論文 参考訳(メタデータ) (2022-11-11T11:24:55Z) - Self-Supervised Learning of Multi-Object Keypoints for Robotic
Manipulation [8.939008609565368]
本稿では,下流政策学習におけるDense Cor correspondence pretext Taskによる画像キーポイントの学習の有効性を示す。
我々は,多様なロボット操作タスクに対するアプローチを評価し,他の視覚表現学習手法と比較し,その柔軟性と有効性を示した。
論文 参考訳(メタデータ) (2022-05-17T13:15:07Z) - BC-Z: Zero-Shot Task Generalization with Robotic Imitation Learning [108.41464483878683]
本稿では,視覚に基づくロボット操作システムにおいて,新しいタスクを一般化することの課題について検討する。
実演と介入の両方から学ぶことができるインタラクティブで柔軟な模倣学習システムを開発した。
実際のロボットにおけるデータ収集を100以上のタスクにスケールすると、このシステムは平均的な成功率44%で24の目に見えない操作タスクを実行できる。
論文 参考訳(メタデータ) (2022-02-04T07:30:48Z) - Lifelong Robotic Reinforcement Learning by Retaining Experiences [61.79346922421323]
多くのマルチタスク強化学習は、ロボットが常にすべてのタスクからデータを収集できると仮定している。
本研究では,物理ロボットシステムの実用的制約を動機として,現実的なマルチタスクRL問題について検討する。
我々は、ロボットのスキルセットを累積的に成長させるために、過去のタスクで学んだデータとポリシーを効果的に活用するアプローチを導出する。
論文 参考訳(メタデータ) (2021-09-19T18:00:51Z) - Visual Adversarial Imitation Learning using Variational Models [60.69745540036375]
逆関数仕様は、深い強化学習を通しての学習行動にとって大きな障害であり続けている。
望ましい行動の視覚的なデモンストレーションは、エージェントを教えるためのより簡単で自然な方法を示すことが多い。
変動モデルに基づく対向的模倣学習アルゴリズムを開発した。
論文 参考訳(メタデータ) (2021-07-16T00:15:18Z) - CRIL: Continual Robot Imitation Learning via Generative and Prediction
Model [8.896427780114703]
本研究では,ロボットが個別に新しいタスクを継続的に学習することを可能にする,連続的な模倣学習能力を実現する方法について研究する。
本稿では,生成的対向ネットワークと動的予測モデルの両方を利用する新しいトラジェクトリ生成モデルを提案する。
本手法の有効性をシミュレーションと実世界操作の両方で実証した。
論文 参考訳(メタデータ) (2021-06-17T12:15:57Z) - Scalable Multi-Task Imitation Learning with Autonomous Improvement [159.9406205002599]
我々は、自律的なデータ収集を通じて継続的に改善できる模倣学習システムを構築している。
我々は、ロボット自身の試行を、実際に試みたタスク以外のタスクのデモとして活用する。
従来の模倣学習のアプローチとは対照的に,本手法は,継続的改善のための疎い監視によるデータ収集を自律的に行うことができる。
論文 参考訳(メタデータ) (2020-02-25T18:56:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。