論文の概要: Optimising simulations for diphoton production at hadron colliders using
amplitude neural networks
- arxiv url: http://arxiv.org/abs/2106.09474v1
- Date: Thu, 17 Jun 2021 13:24:36 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-22 04:20:29.905174
- Title: Optimising simulations for diphoton production at hadron colliders using
amplitude neural networks
- Title(参考訳): 振幅ニューラルネットワークを用いたハドロン衝突体における二光子生成の最適化シミュレーション
- Authors: Joseph Aylett-Bullock, Simon Badger, Ryan Moodie
- Abstract要約: 高多重度散乱過程における行列要素の近似にニューラルネットワークを用いることを検討する。
本研究では,ハドロンコライダー観測装置に適用可能な実測シミュレーション法を開発した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine learning technology has the potential to dramatically optimise event
generation and simulations. We continue to investigate the use of neural
networks to approximate matrix elements for high-multiplicity scattering
processes. We focus on the case of loop-induced diphoton production through
gluon fusion and develop a realistic simulation method that can be applied to
hadron collider observables. Neural networks are trained using the one-loop
amplitudes implemented in the NJet C++ library and interfaced to the Sherpa
Monte Carlo event generator where we perform a detailed study for $2\to3$ and
$2\to4$ scattering problems. We also consider how the trained networks perform
when varying the kinematic cuts effecting the phase space and the reliability
of the neural network simulations.
- Abstract(参考訳): 機械学習技術は、イベント生成とシミュレーションを劇的に最適化する可能性がある。
我々は,高多重散乱過程における近似行列要素に対するニューラルネットワークの利用について検討を続けている。
グルーオン核融合によるループ誘起二光子生成の事例に注目し,ハドロン衝突型加速器観測に応用可能な現実的なシミュレーション手法を開発した。
ニューラルネットワークは、NJet C++ライブラリで実装された1ループ振幅を使用してトレーニングされ、Sherpa Monte Carloイベントジェネレータにインターフェースされる。
また,訓練されたネットワークは,位相空間に影響を及ぼす運動的切断やニューラルネットワークシミュレーションの信頼性を変化させる際にどのように振る舞うかを考察する。
関連論文リスト
- Applying generative neural networks for fast simulations of the ALICE (CERN) experiment [0.0]
この論文は、CERNのゼロ・デグレ・カロリメータ(ZDC)中性子検出器の高速シミュレーションのための生成ニューラルネットワークへの最先端の応用について研究している。
GEANT Monte Carlo ツールキットを用いた従来のシミュレーション手法は正確ではあるが、計算的に要求される。
この論文は、コンピュータビジョンにおけるニューラルネットワークの適用、機械学習を用いた高速シミュレーション、高エネルギー物理学における生成ニューラルネットワークに関する包括的な文献レビューを提供する。
論文 参考訳(メタデータ) (2024-07-10T17:08:59Z) - Machine Learning methods for simulating particle response in the Zero
Degree Calorimeter at the ALICE experiment, CERN [8.980453507536017]
現在、CERN GRIDの計算能力の半分以上が高エネルギー物理シミュレーションに使われている。
大型ハドロン衝突型加速器(LHC)の最新情報により、より効率的なシミュレーション手法の開発の必要性が高まっている。
機械学習を利用した問題に対する代替手法を提案する。
論文 参考訳(メタデータ) (2023-06-23T16:45:46Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
スパイキングニューラルネットワーク(SNN)は、エネルギー消費と遅延の観点から、桁違いに改善されている。
我々は、カスタムSNN PythonパッケージsnnTorchのIPU最適化リリースを提示する。
論文 参考訳(メタデータ) (2022-11-19T15:44:08Z) - Continual learning autoencoder training for a particle-in-cell
simulation via streaming [52.77024349608834]
今後のエクサスケール時代は 次世代の物理シミュレーションを 高解像度で提供します
これらのシミュレーションは高解像度であり、ディスク上に大量のシミュレーションデータを格納することはほぼ不可能であるため、機械学習モデルのトレーニングに影響を与える。
この研究は、ディスク上のデータなしで、実行中のシミュレーションにニューラルネットワークを同時にトレーニングするアプローチを示す。
論文 参考訳(メタデータ) (2022-11-09T09:55:14Z) - An Adversarial Active Sampling-based Data Augmentation Framework for
Manufacturable Chip Design [55.62660894625669]
リソグラフィーモデリングは、チップ設計マスクが製造可能であることを保証するため、チップ設計において重要な問題である。
機械学習の最近の進歩は、時間を要するリソグラフィーシミュレーションをディープニューラルネットワークに置き換えるための代替ソリューションを提供している。
本稿では,限られたデータのジレンマを解消し,機械学習モデルの性能を向上させるために,データ拡張フレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-27T20:53:39Z) - An advanced spatio-temporal convolutional recurrent neural network for
storm surge predictions [73.4962254843935]
本研究では, 人工ニューラルネットワークモデルを用いて, 嵐の軌跡/規模/強度履歴に基づいて, 強風をエミュレートする能力について検討する。
本研究では, 人工嵐シミュレーションのデータベースを用いて, 強風を予測できるニューラルネットワークモデルを提案する。
論文 参考訳(メタデータ) (2022-04-18T23:42:18Z) - Optimising hadronic collider simulations using amplitude neural networks [0.0]
我々はNJet C++ライブラリから1ループ振幅でニューラルネットワークモデルをトレーニングし、Sherpa Monte Carloイベントジェネレータとインターフェースする。
その結果,分布の一致は良好であり,シミュレーション時間も30倍に短縮された。
論文 参考訳(メタデータ) (2022-02-09T15:08:30Z) - Parallel Simulation of Quantum Networks with Distributed Quantum State
Management [56.24769206561207]
我々は、量子ネットワークの並列シミュレーションの要件を特定し、最初の並列離散事象量子ネットワークシミュレータを開発する。
コントリビューションには、複数のプロセスに分散した共有量子情報を維持する量子状態マネージャの設計と開発が含まれています。
既存のシーケンシャルバージョンと並行してオープンソースツールとして,並列SeQUeNCeシミュレータをリリースする。
論文 参考訳(メタデータ) (2021-11-06T16:51:17Z) - A quantum algorithm for training wide and deep classical neural networks [72.2614468437919]
勾配勾配勾配による古典的トレーサビリティに寄与する条件は、量子線形系を効率的に解くために必要な条件と一致することを示す。
MNIST画像データセットがそのような条件を満たすことを数値的に示す。
我々は、プールを用いた畳み込みニューラルネットワークのトレーニングに$O(log n)$の実証的証拠を提供する。
論文 参考訳(メタデータ) (2021-07-19T23:41:03Z) - Gaussian boson sampling and multi-particle event optimization by machine
learning in the quantum phase space [0.11421942894219898]
量子位相空間における多体ガウス状態の特性関数を表現するためにニューラルネットワークを用いる。
自動微分によるボソンパターンの確率を計算する。
この結果は、量子技術のための新しいソースと複雑な回路の作成に潜在的に有用である。
論文 参考訳(メタデータ) (2021-02-24T09:08:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。