論文の概要: Applying generative neural networks for fast simulations of the ALICE (CERN) experiment
- arxiv url: http://arxiv.org/abs/2407.16704v1
- Date: Wed, 10 Jul 2024 17:08:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-28 18:29:13.423033
- Title: Applying generative neural networks for fast simulations of the ALICE (CERN) experiment
- Title(参考訳): ALICE(CERN)実験の高速シミュレーションのための生成ニューラルネットワークの適用
- Authors: Maksymilian Wojnar,
- Abstract要約: この論文は、CERNのゼロ・デグレ・カロリメータ(ZDC)中性子検出器の高速シミュレーションのための生成ニューラルネットワークへの最先端の応用について研究している。
GEANT Monte Carlo ツールキットを用いた従来のシミュレーション手法は正確ではあるが、計算的に要求される。
この論文は、コンピュータビジョンにおけるニューラルネットワークの適用、機械学習を用いた高速シミュレーション、高エネルギー物理学における生成ニューラルネットワークに関する包括的な文献レビューを提供する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This thesis investigates the application of state-of-the-art advances in generative neural networks for fast simulation of the Zero Degree Calorimeter (ZDC) neutron detector in the ALICE experiment at CERN. Traditional simulation methods using the GEANT Monte Carlo toolkit, while accurate, are computationally demanding. With increasing computational needs at CERN, efficient simulation techniques are essential. The thesis provides a comprehensive literature review on the application of neural networks in computer vision, fast simulations using machine learning, and generative neural networks in high-energy physics. The theory of the analyzed models is also discussed, along with technical aspects and the challenges associated with a practical implementation. The experiments evaluate various neural network architectures, including convolutional neural networks, vision transformers, and MLP-Mixers, as well as generative frameworks such as autoencoders, generative adversarial networks, vector quantization models, and diffusion models. Key contributions include the implementation and evaluation of these models, a significant improvement in the Wasserstein metric compared to existing methods with a low generation time of 5 milliseconds per sample, and the formulation of a list of recommendations for developing models for fast ZDC simulation. Open-source code and detailed hyperparameter settings are provided for reproducibility. Additionally, the thesis outlines future research directions to further enhance simulation fidelity and efficiency.
- Abstract(参考訳): この論文は、CERNのALICE実験におけるゼロDegree Calorimeter(ZDC)中性子検出器の高速シミュレーションのための生成ニューラルネットワークへの最先端の応用について研究している。
GEANT Monte Carlo ツールキットを用いた従来のシミュレーション手法は正確ではあるが、計算的に要求される。
CERNにおける計算ニーズの増加に伴い、効率的なシミュレーション技術が不可欠である。
この論文は、コンピュータビジョンにおけるニューラルネットワークの適用、機械学習を用いた高速シミュレーション、高エネルギー物理学における生成ニューラルネットワークに関する包括的な文献レビューを提供する。
分析モデルの理論も技術的側面や実践的な実装に関わる課題とともに議論されている。
実験では、畳み込みニューラルネットワーク、ビジョントランスフォーマー、MLP-ミキサーなどの様々なニューラルネットワークアーキテクチャや、オートエンコーダ、生成逆ネットワーク、ベクトル量子化モデル、拡散モデルなどの生成フレームワークを評価した。
主な貢献は、これらのモデルの実装と評価、サンプルあたり5ミリ秒の低い生成時間を持つ既存の方法と比較して、ワッサースタイン計量の大幅な改善、高速ZDCシミュレーションのためのモデルを開発するためのレコメンデーションのリストの定式化である。
再現性のために、オープンソースコードと詳細なハイパーパラメータ設定が提供される。
さらに、この論文は将来の研究の方向性を概説し、シミュレーションの忠実さと効率をさらに高めている。
関連論文リスト
- A Realistic Simulation Framework for Analog/Digital Neuromorphic Architectures [73.65190161312555]
ARCANAは、混合信号ニューロモルフィック回路の特性を考慮に入れたスパイクニューラルネットワークシミュレータである。
その結果,ソフトウェアでトレーニングしたスパイクニューラルネットワークの挙動を,信頼性の高い推定結果として提示した。
論文 参考訳(メタデータ) (2024-09-23T11:16:46Z) - Liquid Fourier Latent Dynamics Networks for fast GPU-based numerical simulations in computational cardiology [0.0]
複素測地上での高次非線形微分方程式の多スケールおよび多物理集合に対するパラメータ化時空間サロゲートモデルを作成するために、Latent Dynamics Networks(LDNets)の拡張を提案する。
LFLDNetは、時間的ダイナミクスのために神経学的にインスパイアされたスパースな液体ニューラルネットワークを使用し、時間進行のための数値ソルバの要求を緩和し、パラメータ、精度、効率、学習軌道の点で優れたパフォーマンスをもたらす。
論文 参考訳(メタデータ) (2024-08-19T09:14:25Z) - Mechanistic Neural Networks for Scientific Machine Learning [58.99592521721158]
我々は、科学における機械学習応用のためのニューラルネットワーク設計であるメカニスティックニューラルネットワークを提案する。
新しいメカニスティックブロックを標準アーキテクチャに組み込んで、微分方程式を表現として明示的に学習する。
我々のアプローチの中心は、線形プログラムを解くために線形ODEを解く技術に着想を得た、新しい線形計画解法(NeuRLP)である。
論文 参考訳(メタデータ) (2024-02-20T15:23:24Z) - Machine Learning methods for simulating particle response in the Zero
Degree Calorimeter at the ALICE experiment, CERN [8.980453507536017]
現在、CERN GRIDの計算能力の半分以上が高エネルギー物理シミュレーションに使われている。
大型ハドロン衝突型加速器(LHC)の最新情報により、より効率的なシミュレーション手法の開発の必要性が高まっている。
機械学習を利用した問題に対する代替手法を提案する。
論文 参考訳(メタデータ) (2023-06-23T16:45:46Z) - Automatic Evolution of Machine-Learning based Quantum Dynamics with
Uncertainty Analysis [4.629634111796585]
長期記憶リカレントニューラルネットワーク(LSTM-RNN)モデルは、長期量子力学をシミュレートするために用いられる。
この研究は、オープン量子システムの動的進化をシミュレートする効果的な機械学習アプローチを構築する。
論文 参考訳(メタデータ) (2022-05-07T08:53:55Z) - An advanced spatio-temporal convolutional recurrent neural network for
storm surge predictions [73.4962254843935]
本研究では, 人工ニューラルネットワークモデルを用いて, 嵐の軌跡/規模/強度履歴に基づいて, 強風をエミュレートする能力について検討する。
本研究では, 人工嵐シミュレーションのデータベースを用いて, 強風を予測できるニューラルネットワークモデルを提案する。
論文 参考訳(メタデータ) (2022-04-18T23:42:18Z) - Optimising hadronic collider simulations using amplitude neural networks [0.0]
我々はNJet C++ライブラリから1ループ振幅でニューラルネットワークモデルをトレーニングし、Sherpa Monte Carloイベントジェネレータとインターフェースする。
その結果,分布の一致は良好であり,シミュレーション時間も30倍に短縮された。
論文 参考訳(メタデータ) (2022-02-09T15:08:30Z) - Mapping and Validating a Point Neuron Model on Intel's Neuromorphic
Hardware Loihi [77.34726150561087]
インテルの第5世代ニューロモルフィックチップ「Loihi」の可能性について検討する。
Loihiは、脳内のニューロンをエミュレートするスパイキングニューラルネットワーク(SNN)という新しいアイデアに基づいている。
Loihiは従来のシミュレーションを非常に効率的に再現し、ネットワークが大きくなるにつれて、時間とエネルギーの両方のパフォーマンスにおいて顕著にスケールする。
論文 参考訳(メタデータ) (2021-09-22T16:52:51Z) - Deep Bayesian Active Learning for Accelerating Stochastic Simulation [74.58219903138301]
Interactive Neural Process(INP)は、シミュレーションとアクティブな学習アプローチのためのディープラーニングフレームワークである。
能動的学習のために,NPベースモデルの潜時空間で計算された新しい取得関数Latent Information Gain (LIG)を提案する。
その結果,STNPは学習環境のベースラインを上回り,LIGは能動学習の最先端を達成していることがわかった。
論文 参考訳(メタデータ) (2021-06-05T01:31:51Z) - Invertible Surrogate Models: Joint surrogate modelling and
reconstruction of Laser-Wakefield Acceleration by invertible neural networks [55.41644538483948]
可逆ニューラルネットワークは、機械学習の最近の技術である。
我々は、レーザープラズマ加速器(iLWFA)に関わる物理学の複雑な前方シミュレーションを近似する可逆サロゲートモデルを導入する。
論文 参考訳(メタデータ) (2021-06-01T12:26:10Z) - Adaptive Neural Network-Based Approximation to Accelerate Eulerian Fluid
Simulation [9.576796509480445]
モデル生成とアプリケーションを自動化するフレームワークであるSmartfluidnetを紹介します。
Smartfluidnetはシミュレーションの前に複数のニューラルネットワークを生成し、実行時間とシミュレーション品質要件を満たす。
We show that Smartfluidnet achieve a 1.46x and 590x speedup compared with a state-of-the-art neural network model and the original fluid Simulation。
論文 参考訳(メタデータ) (2020-08-26T21:44:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。