論文の概要: Machine learning methods for postprocessing ensemble forecasts of wind
gusts: A systematic comparison
- arxiv url: http://arxiv.org/abs/2106.09512v1
- Date: Thu, 17 Jun 2021 14:03:29 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-18 16:01:45.099883
- Title: Machine learning methods for postprocessing ensemble forecasts of wind
gusts: A systematic comparison
- Title(参考訳): 風向予測の処理後アンサンブル予測のための機械学習手法:系統的比較
- Authors: Benedikt Schulz and Sebastian Lerch
- Abstract要約: 系統的な誤りを正すためにアンサンブルの天気予報を後処理することは、研究や運用において標準的な慣行となっている。
本稿では,確率論的風速予測のための8つの統計的および機械学習手法の総合的なレビューと体系的比較を行う。
本稿では,様々な確率予測型を出力とする局所適応型ニューラルネットワークの柔軟なフレームワークを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Postprocessing ensemble weather predictions to correct systematic errors has
become a standard practice in research and operations. However, only few recent
studies have focused on ensemble postprocessing of wind gust forecasts, despite
its importance for severe weather warnings. Here, we provide a comprehensive
review and systematic comparison of eight statistical and machine learning
methods for probabilistic wind gust forecasting via ensemble postprocessing,
that can be divided in three groups: State of the art postprocessing techniques
from statistics (ensemble model output statistics (EMOS), member-by-member
postprocessing, isotonic distributional regression), established machine
learning methods (gradient-boosting extended EMOS, quantile regression forests)
and neural network-based approaches (distributional regression network,
Bernstein quantile network, histogram estimation network). The methods are
systematically compared using six years of data from a high-resolution,
convection-permitting ensemble prediction system that was run operationally at
the German weather service, and hourly observations at 175 surface weather
stations in Germany. While all postprocessing methods yield calibrated
forecasts and are able to correct the systematic errors of the raw ensemble
predictions, incorporating information from additional meteorological predictor
variables beyond wind gusts leads to significant improvements in forecast
skill. In particular, we propose a flexible framework of locally adaptive
neural networks with different probabilistic forecast types as output, which
not only significantly outperform all benchmark postprocessing methods but also
learn physically consistent relations associated with the diurnal cycle,
especially the evening transition of the planetary boundary layer.
- Abstract(参考訳): 系統的誤りを訂正するための後処理アンサンブル気象予測は、研究と運用の標準的な実践となっている。
しかし、厳しい気象予報の重要性にもかかわらず、風速予報のアンサンブル後処理に焦点を当てた最近の研究はほとんどない。
Here, we provide a comprehensive review and systematic comparison of eight statistical and machine learning methods for probabilistic wind gust forecasting via ensemble postprocessing, that can be divided in three groups: State of the art postprocessing techniques from statistics (ensemble model output statistics (EMOS), member-by-member postprocessing, isotonic distributional regression), established machine learning methods (gradient-boosting extended EMOS, quantile regression forests) and neural network-based approaches (distributional regression network, Bernstein quantile network, histogram estimation network).
これらの手法は、ドイツ気象局で運用された高解像度の対流透過型アンサンブル予測システムから得られた6年間のデータと、ドイツの気象観測所175箇所の時間観測を用いて体系的に比較される。
すべての後処理方法は、校正された予測を導き、生のアンサンブル予測の系統的誤りを補正することができるが、風向以外の気象予測変数からの情報を組み込むことで、予測スキルが大幅に向上する。
特に,様々な確率予測型を出力とする局所適応型ニューラルネットワークのフレキシブルなフレームワークを提案する。これは,ベンチマーク後処理法を著しく上回るだけでなく,日周期,特に惑星境界層の夜間遷移に関連する物理的に一貫した関係を学習する。
関連論文リスト
- ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
非対称な最適化を行い、極端な天気予報を得るために極端な値を強調する新しい損失関数であるExlossを導入する。
また,複数のランダムサンプルを用いて予測結果の不確かさをキャプチャするExBoosterについても紹介する。
提案手法は,上位中距離予測モデルに匹敵する全体的な予測精度を維持しつつ,極端気象予測における最先端性能を達成することができる。
論文 参考訳(メタデータ) (2024-02-02T10:34:13Z) - Observation-Guided Meteorological Field Downscaling at Station Scale: A
Benchmark and a New Method [66.80344502790231]
気象学的ダウンスケーリングを任意の散乱ステーションスケールに拡張し、新しいベンチマークとデータセットを確立する。
データ同化技術にインスパイアされた我々は、観測データをダウンスケーリングプロセスに統合し、マルチスケールの観測先行情報を提供する。
提案手法は、複数の曲面変数上で、他の特別に設計されたベースラインモデルよりも優れている。
論文 参考訳(メタデータ) (2024-01-22T14:02:56Z) - Towards an end-to-end artificial intelligence driven global weather forecasting system [57.5191940978886]
我々は,地球規模の気象変動に対するAIに基づくデータ同化モデル,すなわちAdasを提案する。
我々は,アダスが地球観測を同化して高品質な分析を行い,長期にわたって安定して運用できることを実証した。
この手法を現実のシナリオに適用するのは,私たちが初めてです。
論文 参考訳(メタデータ) (2023-12-18T09:05:28Z) - Postprocessing of Ensemble Weather Forecasts Using Permutation-invariant
Neural Networks [0.0]
予測アンサンブルを未順序メンバー予測の集合として扱うネットワークを提案する。
キャリブレーションとシャープネスの観点から,得られた予測分布の質を評価する。
以上の結果から,関連する情報の大部分は,ある程度の自由度に含まれていることが示唆された。
論文 参考訳(メタデータ) (2023-09-08T17:20:51Z) - Statistical post-processing of visibility ensemble forecasts [0.0]
局所的,半局所的,局所的に訓練された比例確率対数回帰(POLR)と多層パーセプトロン(MLP)ニューラルネットワーク分類器の予測性能について検討した。
気候学的な予測は生のアンサンブルを広いマージンで上回るが、後処理により予測スキルが大幅に向上することを示した。
論文 参考訳(メタデータ) (2023-05-24T16:41:36Z) - Forecast reconciliation for vaccine supply chain optimization [61.13962963550403]
ワクチンサプライチェーン最適化は階層的な時系列予測の恩恵を受けることができる。
異なる階層レベルの予測は、上位レベルの予測が下位レベルの予測の総和と一致しないときに不整合となる。
我々は2010年から2021年にかけてのGSKの販売データを階層的時系列としてモデル化し,ワクチン販売予測問題に取り組む。
論文 参考訳(メタデータ) (2023-05-02T14:34:34Z) - A Machine Learning Outlook: Post-processing of Global Medium-range
Forecasts [0.0]
後処理は通常、数値気象予測(NWP)モデルの出力を受け取り、線形統計手法を適用する。
本研究では, 温度850hPaで7日間の予測において, 最大12%(RMSE)の精度向上を達成できることを示す。
我々は、ルート平均二乗誤差 (RMSE) や異常相関係数 (ACC) といった標準メトリクスを使用する際の課題について議論する。
論文 参考訳(メタデータ) (2023-03-28T20:48:01Z) - Computing the ensemble spread from deterministic weather predictions
using conditional generative adversarial networks [0.0]
本稿では,深層学習アルゴリズムを用いて,アンサンブル予測システムの統計的特性を学習することを提案する。
訓練が終わると、将来のアンサンブル予測を得るためには、コストのかかるアンサンブル予測システムがもはや不要になる。
論文 参考訳(メタデータ) (2022-05-18T19:10:38Z) - Forecasting large-scale circulation regimes using deformable
convolutional neural networks and global spatiotemporal climate data [86.1450118623908]
変形可能な畳み込みニューラルネットワーク(deCNN)に基づく教師あり機械学習手法の検討
今後1~15日にわたって北大西洋-欧州の気象条件を予測した。
より広い視野で見れば、通常の畳み込みニューラルネットワークよりも5~6日を超えるリードタイムでかなり優れた性能を発揮することが分かる。
論文 参考訳(メタデータ) (2022-02-10T11:37:00Z) - Probabilistic Gradient Boosting Machines for Large-Scale Probabilistic
Regression [51.770998056563094]
PGBM(Probabilistic Gradient Boosting Machines)は、確率的予測を生成する手法である。
既存の最先端手法と比較してPGBMの利点を実証的に示す。
論文 参考訳(メタデータ) (2021-06-03T08:32:13Z) - Deep Learning for Post-Processing Ensemble Weather Forecasts [14.622977874836298]
深層ニューラルネットワークを用いた後処理ステップと組み合わせて,元来の天気トラジェクトリのサブセットのみを使用する混合モデルを提案する。
我々の後処理では,全アンサンブルに匹敵する結果を得るために,より少ないトラジェクトリを使用できることを示す。
論文 参考訳(メタデータ) (2020-05-18T14:23:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。