論文の概要: A Machine Learning Outlook: Post-processing of Global Medium-range
Forecasts
- arxiv url: http://arxiv.org/abs/2303.16301v1
- Date: Tue, 28 Mar 2023 20:48:01 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-30 16:53:08.664293
- Title: A Machine Learning Outlook: Post-processing of Global Medium-range
Forecasts
- Title(参考訳): 機械学習の展望:グローバル中規模予測のポストプロセッシング
- Authors: Shreya Agrawal, Rob Carver, Cenk Gazen, Eric Maddy, Vladimir
Krasnopolsky, Carla Bromberg, Zack Ontiveros, Tyler Russell, Jason Hickey,
and Sid Boukabara
- Abstract要約: 後処理は通常、数値気象予測(NWP)モデルの出力を受け取り、線形統計手法を適用する。
本研究では, 温度850hPaで7日間の予測において, 最大12%(RMSE)の精度向上を達成できることを示す。
我々は、ルート平均二乗誤差 (RMSE) や異常相関係数 (ACC) といった標準メトリクスを使用する際の課題について議論する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Post-processing typically takes the outputs of a Numerical Weather Prediction
(NWP) model and applies linear statistical techniques to produce improve
localized forecasts, by including additional observations, or determining
systematic errors at a finer scale. In this pilot study, we investigate the
benefits and challenges of using non-linear neural network (NN) based methods
to post-process multiple weather features -- temperature, moisture, wind,
geopotential height, precipitable water -- at 30 vertical levels, globally and
at lead times up to 7 days. We show that we can achieve accuracy improvements
of up to 12% (RMSE) in a field such as temperature at 850hPa for a 7 day
forecast. However, we recognize the need to strengthen foundational work on
objectively measuring a sharp and correct forecast. We discuss the challenges
of using standard metrics such as root mean squared error (RMSE) or anomaly
correlation coefficient (ACC) as we move from linear statistical models to more
complex non-linear machine learning approaches for post-processing global
weather forecasts.
- Abstract(参考訳): ポストプロセッシングは通常、数値気象予測(nwp)モデルの出力を受け取り、線形統計手法を適用して、追加の観測を含む、あるいはより細かいスケールで系統的なエラーを決定することにより、局所的な予測を改善する。
本研究では,非線形ニューラルネットワーク(NN)を用いた複数の気象特性(温度,湿度,風,地磁気高度,降水量)を,地球上およびリードタイムで最大7日間にわたって30の垂直レベルで処理する手法の利点と課題について検討する。
850hpaの温度などの分野において、7日間の予測で最大12% (rmse) の精度向上を達成できることを示した。
しかし,鋭利で正確な予測を客観的に測定するための基礎的作業の強化の必要性を認識した。
我々は、線形統計モデルからより複雑な非線形機械学習アプローチに移行する際に、ルート平均二乗誤差 (RMSE) や異常相関係数 (ACC) などの標準メトリクスを使用する際の課題について議論する。
関連論文リスト
- FuXi Weather: A data-to-forecast machine learning system for global weather [13.052716094161886]
FuXi Weatherは、複数の衛星のデータと類似した機械学習の天気予報システムである。
FuXi 気象は、中央アフリカなどの観測圏において、ECMWF HRES を一貫して上回っている。
論文 参考訳(メタデータ) (2024-08-10T07:42:01Z) - Generalizing Weather Forecast to Fine-grained Temporal Scales via Physics-AI Hybrid Modeling [55.13352174687475]
本稿では,天気予報をより微細なテンポラルスケールに一般化する物理AIハイブリッドモデル(WeatherGFT)を提案する。
具体的には、小さな時間スケールで物理進化をシミュレートするために、慎重に設計されたPDEカーネルを用いる。
我々は、異なるリードタイムでのモデルの一般化を促進するためのリードタイムアウェアトレーニングフレームワークを導入する。
論文 参考訳(メタデータ) (2024-05-22T16:21:02Z) - Aardvark weather: end-to-end data-driven weather forecasting [30.219727555662267]
Aardvark Weatherは、エンドツーエンドのデータ駆動型天気予報システムである。
生の観測を取り込み、グローバルなグリッド化された予測とローカルステーションの予測を出力する。
興味事の量よりもパフォーマンスを最大化するために、エンドツーエンドに最適化することができる。
論文 参考訳(メタデータ) (2024-03-30T16:41:24Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
非対称な最適化を行い、極端な天気予報を得るために極端な値を強調する新しい損失関数であるExlossを導入する。
また,複数のランダムサンプルを用いて予測結果の不確かさをキャプチャするExBoosterについても紹介する。
提案手法は,上位中距離予測モデルに匹敵する全体的な予測精度を維持しつつ,極端気象予測における最先端性能を達成することができる。
論文 参考訳(メタデータ) (2024-02-02T10:34:13Z) - Towards an end-to-end artificial intelligence driven global weather forecasting system [57.5191940978886]
我々は,地球規模の気象変動に対するAIに基づくデータ同化モデル,すなわちAdasを提案する。
我々は,アダスが地球観測を同化して高品質な分析を行い,長期にわたって安定して運用できることを実証した。
この手法を現実のシナリオに適用するのは,私たちが初めてです。
論文 参考訳(メタデータ) (2023-12-18T09:05:28Z) - FengWu: Pushing the Skillful Global Medium-range Weather Forecast beyond
10 Days Lead [93.67314652898547]
人工知能(AI)に基づく高度データ駆動型中距離気象予報システムFengWuについて紹介する。
FengWuは大気力学を正確に再現し、0.25度緯度で37の垂直レベルで将来の陸と大気の状態を予測することができる。
その結果、FengWuは予測能力を大幅に向上させ、熟練した中距離気象予報を10.75日間のリードまで拡張できることがわかった。
論文 参考訳(メタデータ) (2023-04-06T09:16:39Z) - Pangu-Weather: A 3D High-Resolution Model for Fast and Accurate Global
Weather Forecast [91.9372563527801]
我々は,世界天気予報を迅速かつ高精度に予測するためのディープラーニングベースのシステムであるPangu-Weatherを紹介する。
初めてAIベースの手法が、最先端の数値天気予報法(NWP)を精度で上回った。
Pangu-Weatherは、極端な天気予報や大規模なアンサンブル予測など、幅広い下流予測シナリオをサポートしている。
論文 参考訳(メタデータ) (2022-11-03T17:19:43Z) - Forecasting large-scale circulation regimes using deformable
convolutional neural networks and global spatiotemporal climate data [86.1450118623908]
変形可能な畳み込みニューラルネットワーク(deCNN)に基づく教師あり機械学習手法の検討
今後1~15日にわたって北大西洋-欧州の気象条件を予測した。
より広い視野で見れば、通常の畳み込みニューラルネットワークよりも5~6日を超えるリードタイムでかなり優れた性能を発揮することが分かる。
論文 参考訳(メタデータ) (2022-02-10T11:37:00Z) - Machine learning methods for postprocessing ensemble forecasts of wind
gusts: A systematic comparison [0.0]
系統的な誤りを正すためにアンサンブルの天気予報を後処理することは、研究や運用において標準的な慣行となっている。
本稿では,確率論的風速予測のための8つの統計的および機械学習手法の総合的なレビューと体系的比較を行う。
本稿では,様々な確率予測型を出力とする局所適応型ニューラルネットワークの柔軟なフレームワークを提案する。
論文 参考訳(メタデータ) (2021-06-17T14:03:29Z) - Deep Learning for Post-Processing Ensemble Weather Forecasts [14.622977874836298]
深層ニューラルネットワークを用いた後処理ステップと組み合わせて,元来の天気トラジェクトリのサブセットのみを使用する混合モデルを提案する。
我々の後処理では,全アンサンブルに匹敵する結果を得るために,より少ないトラジェクトリを使用できることを示す。
論文 参考訳(メタデータ) (2020-05-18T14:23:26Z) - Machine learning for total cloud cover prediction [0.0]
本稿では,多層パーセプトロン(MLP)ニューラルネットワーク,勾配促進機(GBM)およびランダムフォレスト(RF)法を用いた後処理の性能について検討する。
生のアンサンブルと比較して、全ての校正法は予測スキルを著しく向上させる。
RFモデルは予測性能が最小となる一方、POLRとGBMのアプローチは最良である。
論文 参考訳(メタデータ) (2020-01-16T17:13:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。