AI-Enabled Ultra-Low-Dose CT Reconstruction
- URL: http://arxiv.org/abs/2106.09834v1
- Date: Thu, 17 Jun 2021 22:13:11 GMT
- Title: AI-Enabled Ultra-Low-Dose CT Reconstruction
- Authors: Weiwen Wu, Chuang Niu, Shadi Ebrahimian, Hengyong Yu, Mannu Kalra, Ge
Wang
- Abstract summary: In this paper, we demonstrate that AI-powered CT reconstruction offers diagnostic image quality at an ultra-low-dose level comparable to that of radiography.
The reconstruction results from clinical datasets show that excellent images can be reconstructed using SUGAR from 36 projections.
- Score: 8.135337706680097
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: By the ALARA (As Low As Reasonably Achievable) principle, ultra-low-dose CT
reconstruction is a holy grail to minimize cancer risks and genetic damages,
especially for children. With the development of medical CT technologies, the
iterative algorithms are widely used to reconstruct decent CT images from a
low-dose scan. Recently, artificial intelligence (AI) techniques have shown a
great promise in further reducing CT radiation dose to the next level. In this
paper, we demonstrate that AI-powered CT reconstruction offers diagnostic image
quality at an ultra-low-dose level comparable to that of radiography.
Specifically, here we develop a Split Unrolled Grid-like Alternative
Reconstruction (SUGAR) network, in which deep learning, physical modeling and
image prior are integrated. The reconstruction results from clinical datasets
show that excellent images can be reconstructed using SUGAR from 36
projections. This approach has a potential to change future healthcare.
Related papers
- CoCPF: Coordinate-based Continuous Projection Field for Ill-Posed Inverse Problem in Imaging [78.734927709231]
Sparse-view computed tomography (SVCT) reconstruction aims to acquire CT images based on sparsely-sampled measurements.
Due to ill-posedness, implicit neural representation (INR) techniques may leave considerable holes'' (i.e., unmodeled spaces) in their fields, leading to sub-optimal results.
We propose the Coordinate-based Continuous Projection Field (CoCPF), which aims to build hole-free representation fields for SVCT reconstruction.
arXiv Detail & Related papers (2024-06-21T08:38:30Z) - Rotational Augmented Noise2Inverse for Low-dose Computed Tomography
Reconstruction [83.73429628413773]
Supervised deep learning methods have shown the ability to remove noise in images but require accurate ground truth.
We propose a novel self-supervised framework for LDCT, in which ground truth is not required for training the convolutional neural network (CNN)
Numerical and experimental results show that the reconstruction accuracy of N2I with sparse views is degrading while the proposed rotational augmented Noise2Inverse (RAN2I) method keeps better image quality over a different range of sampling angles.
arXiv Detail & Related papers (2023-12-19T22:40:51Z) - Low-Dose CT Image Enhancement Using Deep Learning [0.0]
It is preferable to use as low a dose of ionizing radiation as possible, particularly in computed tomography (CT) imaging systems.
A popular method for radiation dose reduction in CT imaging is known as the quarter-dose technique.
Recent and popular deep-learning approaches provide an intriguing possibility of image enhancement for low-dose artifacts.
arXiv Detail & Related papers (2023-10-31T08:34:33Z) - Solving Low-Dose CT Reconstruction via GAN with Local Coherence [2.325977856241404]
We propose a novel approach using generative adversarial networks (GANs) with enhanced local coherence.
The proposed method can capture the local coherence of adjacent images by optical flow, which yields significant improvements in the precision and stability of the constructed images.
arXiv Detail & Related papers (2023-09-24T08:55:42Z) - CT Reconstruction from Few Planar X-rays with Application towards
Low-resource Radiotherapy [20.353246282326943]
We propose a method to generate CT volumes from few (5) planar X-ray observations using a prior data distribution.
To focus the generation task on clinically-relevant features, our model can also leverage anatomical guidance during training.
Our method is better than recent sparse CT reconstruction baselines in terms of standard pixel and structure-level metrics.
arXiv Detail & Related papers (2023-08-04T01:17:57Z) - SNAF: Sparse-view CBCT Reconstruction with Neural Attenuation Fields [71.84366290195487]
We propose SNAF for sparse-view CBCT reconstruction by learning the neural attenuation fields.
Our approach achieves superior performance in terms of high reconstruction quality (30+ PSNR) with only 20 input views.
arXiv Detail & Related papers (2022-11-30T14:51:14Z) - Model-Guided Multi-Contrast Deep Unfolding Network for MRI
Super-resolution Reconstruction [68.80715727288514]
We show how to unfold an iterative MGDUN algorithm into a novel model-guided deep unfolding network by taking the MRI observation matrix.
In this paper, we propose a novel Model-Guided interpretable Deep Unfolding Network (MGDUN) for medical image SR reconstruction.
arXiv Detail & Related papers (2022-09-15T03:58:30Z) - Multi-Channel Convolutional Analysis Operator Learning for Dual-Energy
CT Reconstruction [108.06731611196291]
We develop a multi-channel convolutional analysis operator learning (MCAOL) method to exploit common spatial features within attenuation images at different energies.
We propose an optimization method which jointly reconstructs the attenuation images at low and high energies with a mixed norm regularization on the sparse features.
arXiv Detail & Related papers (2022-03-10T14:22:54Z) - MedNeRF: Medical Neural Radiance Fields for Reconstructing 3D-aware
CT-Projections from a Single X-ray [14.10611608681131]
Excessive ionising radiation can lead to deterministic and harmful effects on the body.
This paper proposes a Deep Learning model that learns to reconstruct CT projections from a few or even a single-view X-ray.
arXiv Detail & Related papers (2022-02-02T13:25:23Z) - Self-Attention Generative Adversarial Network for Iterative
Reconstruction of CT Images [0.9208007322096533]
The aim of this study is to train a single neural network to reconstruct high-quality CT images from noisy or incomplete data.
The network includes a self-attention block to model long-range dependencies in the data.
Our approach is shown to have comparable overall performance to CIRCLE GAN, while outperforming the other two approaches.
arXiv Detail & Related papers (2021-12-23T19:20:38Z) - Adaptive Gradient Balancing for UndersampledMRI Reconstruction and
Image-to-Image Translation [60.663499381212425]
We enhance the image quality by using a Wasserstein Generative Adversarial Network combined with a novel Adaptive Gradient Balancing technique.
In MRI, our method minimizes artifacts, while maintaining a high-quality reconstruction that produces sharper images than other techniques.
arXiv Detail & Related papers (2021-04-05T13:05:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.