論文の概要: ScoreGrad: Multivariate Probabilistic Time Series Forecasting with
Continuous Energy-based Generative Models
- arxiv url: http://arxiv.org/abs/2106.10121v1
- Date: Fri, 18 Jun 2021 13:22:12 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-21 14:18:33.759834
- Title: ScoreGrad: Multivariate Probabilistic Time Series Forecasting with
Continuous Energy-based Generative Models
- Title(参考訳): ScoreGrad:連続エネルギーベース生成モデルによる多変量確率時系列予測
- Authors: Tijin Yan, Hongwei Zhang, Tong Zhou, Yufeng Zhan, Yuanqing Xia
- Abstract要約: 本研究では,連続エネルギーモデルに基づく確率的時系列予測フレームワークであるScoreGradを提案する。
ScoreGradは時系列特徴抽出モジュールと条件微分方程式に基づくスコアマッチングモジュールで構成される。
6つの実世界のデータセットで最先端の結果が得られます。
- 参考スコア(独自算出の注目度): 10.337742174633052
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multivariate time series prediction has attracted a lot of attention because
of its wide applications such as intelligence transportation, AIOps. Generative
models have achieved impressive results in time series modeling because they
can model data distribution and take noise into consideration. However, many
existing works can not be widely used because of the constraints of functional
form of generative models or the sensitivity to hyperparameters. In this paper,
we propose ScoreGrad, a multivariate probabilistic time series forecasting
framework based on continuous energy-based generative models. ScoreGrad is
composed of time series feature extraction module and conditional stochastic
differential equation based score matching module. The prediction can be
achieved by iteratively solving reverse-time SDE. To the best of our knowledge,
ScoreGrad is the first continuous energy based generative model used for time
series forecasting. Furthermore, ScoreGrad achieves state-of-the-art results on
six real-world datasets. The impact of hyperparameters and sampler types on the
performance are also explored. Code is available at
https://github.com/yantijin/ScoreGradPred.
- Abstract(参考訳): 多変量時系列予測は、インテリジェンストランスポートやAIOpsといった幅広い応用のために、多くの注目を集めている。
生成モデルは、データ分布をモデル化し、ノイズを考慮に入れることができるため、時系列モデリングにおいて素晴らしい結果を得た。
しかし、多くの既存の作品は、関数型生成モデルの制約やハイパーパラメータに対する感度のために広く利用できない。
本稿では,連続エネルギーに基づく生成モデルに基づく多変量確率時系列予測フレームワークである scoregrad を提案する。
ScoreGradは時系列特徴抽出モジュールと条件確率微分方程式に基づくスコアマッチングモジュールで構成される。
この予測は、逆時間SDEを反復的に解くことで実現できる。
我々の知る限りでは、ScoreGradは時系列予測に使用される最初の連続エネルギーベース生成モデルである。
さらに、ScoreGradは6つの実世界のデータセットで最先端の結果を達成する。
ハイパーパラメータとサンプルタイプがパフォーマンスに与える影響についても検討した。
コードはhttps://github.com/yantijin/scoregradpredで入手できる。
関連論文リスト
- Moirai-MoE: Empowering Time Series Foundation Models with Sparse Mixture of Experts [103.725112190618]
本稿では,単一入出力プロジェクション層を用いたMoirai-MoEを紹介するとともに,多種多様な時系列パターンのモデリングを専門家の疎結合に委ねる。
39のデータセットに対する大規模な実験は、既存の基盤モデルよりも、分配シナリオとゼロショットシナリオの両方において、Moirai-MoEの優位性を実証している。
論文 参考訳(メタデータ) (2024-10-14T13:01:11Z) - Stochastic Diffusion: A Diffusion Probabilistic Model for Stochastic Time Series Forecasting [8.232475807691255]
本稿では,データ駆動型事前知識を各ステップで学習する新しい拡散(StochDiff)モデルを提案する。
学習された事前知識は、複雑な時間的ダイナミクスとデータ固有の不確実性を捉えるのに役立つ。
論文 参考訳(メタデータ) (2024-06-05T00:13:38Z) - Unified Training of Universal Time Series Forecasting Transformers [104.56318980466742]
マスク型ユニバーサル時系列予測変換器(モイライ)について述べる。
Moiraiは、新たに導入された大規模オープンタイムシリーズアーカイブ(LOTSA)で訓練されており、9つのドメインで27億以上の観測が行われた。
Moiraiは、フルショットモデルと比較してゼロショットの予測器として、競争力や優れたパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-02-04T20:00:45Z) - Timer: Generative Pre-trained Transformers Are Large Time Series Models [83.03091523806668]
本稿では,大規模時系列モデル(LTSM)の早期開発を目的とした。
事前トレーニング中に、最大10億のタイムポイントを持つ大規模なデータセットをキュレートします。
多様なアプリケーションのニーズを満たすため,予測,計算,時系列の異常検出を統一的な生成タスクに変換する。
論文 参考訳(メタデータ) (2024-02-04T06:55:55Z) - Lag-Llama: Towards Foundation Models for Probabilistic Time Series
Forecasting [54.04430089029033]
本稿では,デコーダのみの変換器アーキテクチャに基づく時系列予測のための汎用基礎モデルであるLag-Llamaを提案する。
Lag-Llamaは、複数のドメインからの多様な時系列データの大規模なコーパスで事前訓練され、強力なゼロショット一般化能力を示す。
このような未確認データセットの比較的小さな部分で微調整を行うと、Lag-Llamaは最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2023-10-12T12:29:32Z) - Generative Modeling of Regular and Irregular Time Series Data via Koopman VAEs [50.25683648762602]
モデルの新しい設計に基づく新しい生成フレームワークであるKoopman VAEを紹介する。
クープマン理論に触発され、線形写像を用いて潜在条件事前力学を表現する。
KoVAEは、いくつかの挑戦的な合成および実世界の時系列生成ベンチマークにおいて、最先端のGANおよびVAEメソッドより優れている。
論文 参考訳(メタデータ) (2023-10-04T07:14:43Z) - DynaConF: Dynamic Forecasting of Non-Stationary Time Series [4.286546152336783]
非定常条件分布を時間とともにモデル化する新しい手法を提案する。
我々のモデルは、最先端のディープラーニングソリューションよりも定常的でない時系列に適応できることを示します。
論文 参考訳(メタデータ) (2022-09-17T21:40:02Z) - FreDo: Frequency Domain-based Long-Term Time Series Forecasting [12.268979675200779]
誤差の蓄積により,高度なモデルでは,長期予測のベースラインモデルを上回る結果が得られない可能性が示唆された。
本稿では,ベースラインモデル上に構築された周波数領域に基づくニューラルネットワークモデルFreDoを提案する。
論文 参考訳(メタデータ) (2022-05-24T18:19:15Z) - Deep Generative model with Hierarchical Latent Factors for Time Series
Anomaly Detection [40.21502451136054]
本研究は、時系列異常検出のための新しい生成モデルであるDGHLを提示する。
トップダウンの畳み込みネットワークは、新しい階層的な潜在空間を時系列ウィンドウにマッピングし、時間ダイナミクスを利用して情報を効率的にエンコードする。
提案手法は,4つのベンチマーク・データセットにおいて,現在の最先端モデルよりも優れていた。
論文 参考訳(メタデータ) (2022-02-15T17:19:44Z) - SeDyT: A General Framework for Multi-Step Event Forecasting via Sequence
Modeling on Dynamic Entity Embeddings [6.314274045636102]
イベント予測は、時間的知識グラフ推論において重要で困難なタスクである。
本稿では,動的エンティティ埋め込み上でシーケンスモデリングを行う識別フレームワークであるSeDyTを提案する。
時間的グラフニューラルネットワークモデルとシーケンスモデルを組み合わせることで、SeDyTは平均2.4%のMRR改善を実現している。
論文 参考訳(メタデータ) (2021-09-09T20:32:48Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) モデルを提案する。
我々のモデルは、フレキシブルニューラルネットワークを用いて各タイムスタンプの平均と分散をパラメータ化する。
合成データセットと公開実世界のベンチマークの両方において,本モデルの有効性を示す。
論文 参考訳(メタデータ) (2021-02-02T06:15:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。