論文の概要: DynaConF: Dynamic Forecasting of Non-Stationary Time Series
- arxiv url: http://arxiv.org/abs/2209.08411v3
- Date: Sat, 24 Feb 2024 17:47:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-27 19:46:46.928256
- Title: DynaConF: Dynamic Forecasting of Non-Stationary Time Series
- Title(参考訳): DynaConF:非定常時系列の動的予測
- Authors: Siqi Liu, Andreas Lehrmann
- Abstract要約: 非定常条件分布を時間とともにモデル化する新しい手法を提案する。
我々のモデルは、最先端のディープラーニングソリューションよりも定常的でない時系列に適応できることを示します。
- 参考スコア(独自算出の注目度): 4.286546152336783
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep learning has shown impressive results in a variety of time series
forecasting tasks, where modeling the conditional distribution of the future
given the past is the essence. However, when this conditional distribution is
non-stationary, it poses challenges for these models to learn consistently and
to predict accurately. In this work, we propose a new method to model
non-stationary conditional distributions over time by clearly decoupling
stationary conditional distribution modeling from non-stationary dynamics
modeling. Our method is based on a Bayesian dynamic model that can adapt to
conditional distribution changes and a deep conditional distribution model that
handles multivariate time series using a factorized output space. Our
experimental results on synthetic and real-world datasets show that our model
can adapt to non-stationary time series better than state-of-the-art deep
learning solutions.
- Abstract(参考訳): 深層学習は様々な時系列予測タスクにおいて印象的な結果を示しており、過去の条件分布をモデル化することが本質である。
しかし、この条件分布が定常でない場合、これらのモデルが一貫して学習し、正確に予測することが課題となる。
本研究では,非定常力学モデルから定常条件分布モデルを明確に分離することにより,時間とともに非定常条件分布をモデル化する新しい手法を提案する。
本手法は,条件付き分布変化に適応可能なベイズ動的モデルと,因子付き出力空間を用いて多変量時系列を扱う深い条件付き分布モデルに基づいている。
人工および実世界のデータセットに関する実験結果から,我々のモデルは最先端のディープラーニングソリューションよりも非定常時系列に適応できることが示された。
関連論文リスト
- On conditional diffusion models for PDE simulations [53.01911265639582]
スパース観測の予測と同化のためのスコアベース拡散モデルについて検討した。
本稿では,予測性能を大幅に向上させる自動回帰サンプリング手法を提案する。
また,条件付きスコアベースモデルに対する新たなトレーニング戦略を提案する。
論文 参考訳(メタデータ) (2024-10-21T18:31:04Z) - Stochastic Diffusion: A Diffusion Probabilistic Model for Stochastic Time Series Forecasting [8.232475807691255]
本稿では,データ駆動型事前知識を各ステップで学習する新しい拡散(StochDiff)モデルを提案する。
学習された事前知識は、複雑な時間的ダイナミクスとデータ固有の不確実性を捉えるのに役立つ。
論文 参考訳(メタデータ) (2024-06-05T00:13:38Z) - Predict, Refine, Synthesize: Self-Guiding Diffusion Models for
Probabilistic Time Series Forecasting [10.491628898499684]
時系列の非条件学習拡散モデルであるTSDiffを提案する。
提案する自己誘導機構により、補助的ネットワークやトレーニング手順の変更を必要とせず、推論中に下流タスクに対してTSDiffを条件付けることができる。
本研究では,予測,改良,合成データ生成という3つの時系列タスクにおいて,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2023-07-21T10:56:36Z) - Variational latent discrete representation for time series modelling [0.0]
我々は、離散状態がマルコフ連鎖である潜在データモデルを導入し、高速なエンドツーエンドトレーニングを可能にした。
生成モデルの性能は,ビル管理データセットと一般公開されているElectricity Transformerデータセットに基づいて評価する。
論文 参考訳(メタデータ) (2023-06-27T08:15:05Z) - User-defined Event Sampling and Uncertainty Quantification in Diffusion
Models for Physical Dynamical Systems [49.75149094527068]
拡散モデルを用いて予測を行い,カオス力学系に対する不確かさの定量化が可能であることを示す。
本研究では,雑音レベルが低下するにつれて真の分布に収束する条件付きスコア関数の確率的近似法を開発する。
推論時に非線形ユーザ定義イベントを条件付きでサンプリングすることができ、分布の尾部からサンプリングした場合でもデータ統計と一致させることができる。
論文 参考訳(メタデータ) (2023-06-13T03:42:03Z) - Time Series Continuous Modeling for Imputation and Forecasting with Implicit Neural Representations [15.797295258800638]
本稿では,実世界のデータでしばしば発生する課題に対処するために,時系列計算と予測のための新しいモデリング手法を提案する。
本手法はシリーズの進化力学の連続時間依存モデルに依存する。
メタラーニングアルゴリズムによって駆動される変調機構は、観測されたタイムウインドウを超えて、見えないサンプルや外挿への適応を可能にする。
論文 参考訳(メタデータ) (2023-06-09T13:20:04Z) - Non-autoregressive Conditional Diffusion Models for Time Series
Prediction [3.9722979176564763]
TimeDiffは、高品質な時系列予測を実現する非自己回帰拡散モデルである。
我々はTimeDiffが既存の時系列拡散モデルより一貫して優れていることを示す。
論文 参考訳(メタデータ) (2023-06-08T08:53:59Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
マルチスケールアテンション正規化フロー(MANF)と呼ばれる非自己回帰型ディープラーニングモデルを提案する。
我々のモデルは累積誤差の影響を回避し、時間の複雑さを増大させない。
本モデルは,多くの多変量データセット上での最先端性能を実現する。
論文 参考訳(メタデータ) (2022-05-16T07:53:42Z) - Closed-form Continuous-Depth Models [99.40335716948101]
連続深度ニューラルモデルは高度な数値微分方程式解法に依存している。
我々は,CfCネットワークと呼ばれる,記述が簡単で,少なくとも1桁高速な新しいモデル群を提示する。
論文 参考訳(メタデータ) (2021-06-25T22:08:51Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) モデルを提案する。
我々のモデルは、フレキシブルニューラルネットワークを用いて各タイムスタンプの平均と分散をパラメータ化する。
合成データセットと公開実世界のベンチマークの両方において,本モデルの有効性を示す。
論文 参考訳(メタデータ) (2021-02-02T06:15:15Z) - Generative Temporal Difference Learning for Infinite-Horizon Prediction [101.59882753763888]
我々は、無限確率的地平線を持つ環境力学の予測モデルである$gamma$-modelを導入する。
トレーニングタイムとテストタイムの複合的なエラーの間には、そのトレーニングが避けられないトレードオフを反映しているかについて議論する。
論文 参考訳(メタデータ) (2020-10-27T17:54:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。