論文の概要: The Dimpled Manifold Model of Adversarial Examples in Machine Learning
- arxiv url: http://arxiv.org/abs/2106.10151v1
- Date: Fri, 18 Jun 2021 14:32:55 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-21 14:13:43.972546
- Title: The Dimpled Manifold Model of Adversarial Examples in Machine Learning
- Title(参考訳): 機械学習における逆例の単純マニフォールドモデル
- Authors: Adi Shamir, Odelia Melamed, Oriel BenShmuel
- Abstract要約: 本稿では,なぜ敵対的な例が存在するのかを簡潔に説明する,新しい概念的枠組みを提案する。
本論文の最後の部分では,この新モデルを強く支持する多数の実験結果について述べる。
- 参考スコア(独自算出の注目度): 6.6690527698171165
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The extreme fragility of deep neural networks when presented with tiny
perturbations in their inputs was independently discovered by several research
groups in 2013, but in spite of enormous effort these adversarial examples
remained a baffling phenomenon with no clear explanation. In this paper we
introduce a new conceptual framework (which we call the Dimpled Manifold Model)
which provides a simple explanation for why adversarial examples exist, why
their perturbations have such tiny norms, why these perturbations look like
random noise, and why a network which was adversarially trained with
incorrectly labeled images can still correctly classify test images. In the
last part of the paper we describe the results of numerous experiments which
strongly support this new model, and in particular our assertion that
adversarial perturbations are roughly perpendicular to the low dimensional
manifold which contains all the training examples.
- Abstract(参考訳): 2013年にいくつかの研究グループによって、入力に小さな摂動を伴って提示されたディープニューラルネットワークの極端な脆弱さが独立に発見されたが、大きな努力にもかかわらず、これらの敵対的な例は明確な説明が得られず、バッフル現象のままであった。
本稿では,新しい概念的枠組み(dimpled manifold modelと呼ぶ)について紹介する。これは,逆行例が存在する理由,それらの摂動がこれほど小さなノルムを持つ理由,これらの摂動がランダムなノイズに見える理由,不正確なラベル付き画像で逆行的に訓練されたネットワークがテスト画像を正確に分類できる理由について,簡単な説明を与える。
論文の最後の部分では、この新しいモデルを強く支持する多数の実験の結果について述べ、特に、逆摂動はトレーニング例を含む低次元多様体と略垂直であるという主張について述べる。
関連論文リスト
- Transcending Adversarial Perturbations: Manifold-Aided Adversarial
Examples with Legitimate Semantics [10.058463432437659]
ディープニューラルネットワークは、悪意のある小さな摂動によって操作される敵の例に対して、極めて脆弱であった。
本稿では, 現実的, 合法的意味論による敵対的事例を生成するために, 教師付き意味変換生成モデルを提案する。
MNISTおよび産業用欠陥データセットを用いた実験により、我々の敵の例は、より良い視覚的品質を示しただけでなく、優れた攻撃伝達性を示した。
論文 参考訳(メタデータ) (2024-02-05T15:25:40Z) - Does Saliency-Based Training bring Robustness for Deep Neural Networks
in Image Classification? [0.0]
Deep Neural Networksのブラックボックスの性質は、内部動作の完全な理解を妨げる。
オンラインサリエンシ誘導トレーニング手法は、この問題を軽減するために、モデルのアウトプットの顕著な特徴を強調しようとする。
我々は、ロバスト性を定量化し、モデル出力のよく説明された視覚化にもかかわらず、健全なモデルは敵のサンプル攻撃に対して低い性能に苦しむと結論づける。
論文 参考訳(メタデータ) (2023-06-28T22:20:19Z) - A Frequency Perspective of Adversarial Robustness [72.48178241090149]
理論的および経験的知見を参考に,周波数に基づく対向例の理解について述べる。
分析の結果,逆転例は高周波でも低周波成分でもないが,単にデータセット依存であることがわかった。
本稿では、一般に観測される精度対ロバスト性トレードオフの周波数に基づく説明法を提案する。
論文 参考訳(メタデータ) (2021-10-26T19:12:34Z) - Unsupervised Detection of Adversarial Examples with Model Explanations [0.6091702876917279]
本稿では,モデル動作を説明するために開発された手法を用いて,逆例を検出するための簡易かつ効果的な手法を提案する。
MNIST手書きデータセットを用いて評価したところ,本手法は高い信頼度で敵のサンプルを検出することができることがわかった。
論文 参考訳(メタデータ) (2021-07-22T06:54:18Z) - Explainable Adversarial Attacks in Deep Neural Networks Using Activation
Profiles [69.9674326582747]
本稿では,敵対的事例に基づくニューラルネットワークモデルを検討するためのビジュアルフレームワークを提案する。
これらの要素を観察することで、モデル内の悪用領域を素早く特定できることを示す。
論文 参考訳(メタデータ) (2021-03-18T13:04:21Z) - Detecting Adversarial Examples by Input Transformations, Defense
Perturbations, and Voting [71.57324258813674]
畳み込みニューラルネットワーク(CNN)は、視覚認識タスクにおいて超人的性能に達することが証明されている。
CNNは敵の例、すなわち不正な出力をネットワークに強制する悪意のある画像によって簡単に騙される。
本稿では,画像変換による敵例の検出を幅広く検討し,新しい手法を提案する。
論文 参考訳(メタデータ) (2021-01-27T14:50:41Z) - Exploring Simple Siamese Representation Learning [68.37628268182185]
i) 負のサンプル対, (ii) 大きいバッチ, (iii) 運動量エンコーダを用いて, 単純なシームズネットワークは意味のある表現を学習できることを示す。
実験により, 崩壊解は損失や構造に対して存在するが, 崩壊を防止する上では, 停止段階の操作が重要な役割を担っていることがわかった。
論文 参考訳(メタデータ) (2020-11-20T18:59:33Z) - On the Transferability of Adversarial Attacksagainst Neural Text
Classifier [121.6758865857686]
テキスト分類モデルの逆例の転送可能性について検討する。
本稿では,ほとんどすべての既存モデルを騙すために,敵の例を誘導できるモデル群を見つける遺伝的アルゴリズムを提案する。
これらの逆例からモデル診断に使用できる単語置換規則を導出する。
論文 参考訳(メタデータ) (2020-11-17T10:45:05Z) - Verifying the Causes of Adversarial Examples [5.381050729919025]
ニューラルネットワークのロバスト性は、入力に対するほとんど知覚できない摂動を含む敵の例によって挑戦される。
本稿では,敵対的事例の潜在的な原因の収集と,慎重に設計された制御実験による検証(あるいは部分的に検証)を行う。
実験の結果, 幾何学的要因はより直接的な原因であり, 統計的要因は現象を増大させることが明らかとなった。
論文 参考訳(メタデータ) (2020-10-19T16:17:20Z) - Understanding Classifier Mistakes with Generative Models [88.20470690631372]
ディープニューラルネットワークは教師付き学習タスクに有効であるが、脆弱であることが示されている。
本稿では、生成モデルを利用して、分類器が一般化に失敗するインスタンスを特定し、特徴付ける。
我々のアプローチは、トレーニングセットのクラスラベルに依存しないため、半教師付きでトレーニングされたモデルに適用できる。
論文 参考訳(メタデータ) (2020-10-05T22:13:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。