Experimental quantum state measurement with classical shadows
- URL: http://arxiv.org/abs/2106.10190v2
- Date: Thu, 18 Nov 2021 13:39:59 GMT
- Title: Experimental quantum state measurement with classical shadows
- Authors: Ting Zhang, Jinzhao Sun, Xiao-Xu Fang, Xiao-Ming Zhang, Xiao Yuan, and
He Lu
- Abstract summary: A crucial subroutine for various quantum computing and communication algorithms is to efficiently extract different classical properties of quantum states.
We show how to project the quantum state into classical shadows and simultaneously predict $M$ different functions of a state with only $mathcalO(log M)$ measurements.
Our experiment verifies the efficacy of exploiting (derandomized) classical shadows and sheds light on efficient quantum computing with noisy intermediate-scale quantum hardware.
- Score: 5.455606108893398
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A crucial subroutine for various quantum computing and communication
algorithms is to efficiently extract different classical properties of quantum
states. In a notable recent theoretical work by Huang, Kueng, and Preskill
[Nat. Phys. 16, 1050 (2020)], a thrifty scheme showed how to project the
quantum state into classical shadows and simultaneously predict $M$ different
functions of a state with only $\mathcal{O}(\log_2 M)$ measurements,
independent of the system size and saturating the information-theoretical
limit. Here, we experimentally explore the feasibility of the scheme in the
realistic scenario with a finite number of measurements and noisy operations.
We prepare a four-qubit GHZ state and show how to estimate expectation values
of multiple observables and Hamiltonians. We compare the measurement strategies
with uniform, biased, and derandomized classical shadows to conventional ones
that sequentially measure each state function exploiting either importance
sampling or observable grouping. We next demonstrate the estimation of
nonlinear functions using classical shadows and analyze the entanglement of the
prepared quantum state. Our experiment verifies the efficacy of exploiting
(derandomized) classical shadows and sheds light on efficient quantum computing
with noisy intermediate-scale quantum hardware.
Related papers
- Analysing quantum systems with randomised measurements [0.4179230671838898]
We present the advancements made in utilising randomised measurements in various scenarios of quantum information science.
We describe how to detect and characterise different forms of entanglement, including genuine multipartite entanglement and bound entanglement.
We also present an overview on the estimation of non-linear functions of quantum states and shadow tomography from randomised measurements.
arXiv Detail & Related papers (2023-07-03T18:00:01Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Estimating many properties of a quantum state via quantum reservoir
processing [2.5432391525687748]
We propose a general framework for constructing classical approximations of arbitrary quantum states with quantum reservoirs.
A key advantage of our method is that only a single local measurement setting is required for estimating arbitrary properties.
This estimation scheme is extendable to higher-dimensional systems and hybrid systems with non-identical local dimensions.
arXiv Detail & Related papers (2023-05-11T15:21:21Z) - Learning quantum processes without input control [2.6089354079273512]
We introduce a general statistical learning theory for processes that take as input a classical random variable and output a quantum state.
This framework is applicable to the study of astronomical phenomena, disordered systems and biological processes not controlled by the observer.
arXiv Detail & Related papers (2022-11-09T16:34:46Z) - Anticipative measurements in hybrid quantum-classical computation [68.8204255655161]
We present an approach where the quantum computation is supplemented by a classical result.
Taking advantage of its anticipation also leads to a new type of quantum measurements, which we call anticipative.
In an anticipative quantum measurement the combination of the results from classical and quantum computations happens only in the end.
arXiv Detail & Related papers (2022-09-12T15:47:44Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Preparing random states and benchmarking with many-body quantum chaos [48.044162981804526]
We show how to predict and experimentally observe the emergence of random state ensembles naturally under time-independent Hamiltonian dynamics.
The observed random ensembles emerge from projective measurements and are intimately linked to universal correlations built up between subsystems of a larger quantum system.
Our work has implications for understanding randomness in quantum dynamics, and enables applications of this concept in a wider context.
arXiv Detail & Related papers (2021-03-05T08:32:43Z) - Bose-Einstein condensate soliton qubit states for metrological
applications [58.720142291102135]
We propose novel quantum metrology applications with two soliton qubit states.
Phase space analysis, in terms of population imbalance - phase difference variables, is also performed to demonstrate macroscopic quantum self-trapping regimes.
arXiv Detail & Related papers (2020-11-26T09:05:06Z) - Experimental Estimation of Quantum State Properties from Classical
Shadows [0.0]
Full quantum tomography of high-dimensional quantum systems is experimentally infeasible due to the exponential scaling of the number of required measurements.
Several ideas were proposed recently for predicting the limited number of features for these states.
We show on experimental data how this procedure outperforms conventional state reconstruction from a limited number of measurements.
arXiv Detail & Related papers (2020-08-12T11:06:36Z) - Quantum Zeno effect appears in stages [64.41511459132334]
In the quantum Zeno effect, quantum measurements can block the coherent oscillation of a two level system by freezing its state to one of the measurement eigenstates.
We show that the onset of the Zeno regime is marked by a $textitcascade of transitions$ in the system dynamics as the measurement strength is increased.
arXiv Detail & Related papers (2020-03-23T18:17:36Z) - Predicting Many Properties of a Quantum System from Very Few
Measurements [3.6990978741464895]
We present an efficient method for constructing an approximate classical description of a quantum state.
The number of measurements is independent of the system size, and saturates information-theoretic lower bounds.
We apply classical shadows to predict quantum fidelities, entanglement entropies, two-point correlation functions, expectation values of local observables, and the energy variance of many-body local Hamiltonians.
arXiv Detail & Related papers (2020-02-18T19:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.