論文の概要: Non-Iterative Phase Retrieval With Cascaded Neural Networks
- arxiv url: http://arxiv.org/abs/2106.10195v1
- Date: Fri, 18 Jun 2021 15:52:12 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-21 13:59:39.916172
- Title: Non-Iterative Phase Retrieval With Cascaded Neural Networks
- Title(参考訳): カスケードニューラルネットワークを用いた非Iterative Phase Retrieval
- Authors: Tobias Uelwer and Tobias Hoffmann and Stefan Harmeling
- Abstract要約: 本稿では,非オーバースタンプフーリエ等級と異なる解像度で画像を連続的に再構成するディープニューラルネットワークカスケードを提案する。
提案手法を4つの異なるデータセットで評価する。
- 参考スコア(独自算出の注目度): 0.966840768820136
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fourier phase retrieval is the problem of reconstructing a signal given only
the magnitude of its Fourier transformation. Optimization-based approaches,
like the well-established Gerchberg-Saxton or the hybrid input output
algorithm, struggle at reconstructing images from magnitudes that are not
oversampled. This motivates the application of learned methods, which allow
reconstruction from non-oversampled magnitude measurements after a learning
phase. In this paper, we want to push the limits of these learned methods by
means of a deep neural network cascade that reconstructs the image successively
on different resolutions from its non-oversampled Fourier magnitude. We
evaluate our method on four different datasets (MNIST, EMNIST, Fashion-MNIST,
and KMNIST) and demonstrate that it yields improved performance over other
non-iterative methods and optimization-based methods.
- Abstract(参考訳): フーリエ位相の探索はフーリエ変換の大きさのみを与えられる信号を再構成する問題である。
最適化に基づくアプローチ、例えば、よく確立されたGerchberg-Saxtonやハイブリッド入力出力アルゴリズムは、オーバーサンプリングされない大きさの画像を再構成するのに苦労する。
これは学習フェーズ後の非オーバサンプルスケール測定からの再構成を可能にする学習手法の適用を動機付けている。
本稿では,これらの学習手法の限界を深層ニューラルネットワークカスケードを用いて押し上げ,その非サンプリングフーリエマグニチュードから異なる解像度で画像を連続的に再構成する。
提案手法は,MNIST,EMNIST,Fashion-MNIST,KMNISTの4つの異なるデータセット上で評価し,他の非定位手法や最適化手法よりも優れた性能が得られることを示す。
関連論文リスト
- Fine Structure-Aware Sampling: A New Sampling Training Scheme for
Pixel-Aligned Implicit Models in Single-View Human Reconstruction [105.46091601932524]
本研究では,単一視点の人物再構成のための暗黙的画素アライメントモデルをトレーニングするために,FSS(Final Structured-Aware Sampling)を導入する。
FSSは表面の厚さと複雑さに積極的に適応する。
また、画素アライメント型暗黙的モデルのためのメッシュ厚み損失信号を提案する。
論文 参考訳(メタデータ) (2024-02-29T14:26:46Z) - Reinforcement Learning for Sampling on Temporal Medical Imaging
Sequences [0.0]
本研究では、動的画像再構成のためのサンプリング戦略を学ぶために、ダブルディープQ-ラーニングとREINFORCEアルゴリズムを適用した。
時系列のフォーマットでデータを考察し、再構成法は事前訓練されたオートエンコーダ型ニューラルネットワークである。
本稿では,強化学習アルゴリズムが最適サンプリングパターンの発見に有効であることを示す。
論文 参考訳(メタデータ) (2023-08-28T23:55:23Z) - A training-free recursive multiresolution framework for diffeomorphic
deformable image registration [6.929709872589039]
変形可能な画像登録のための新しい微分型学習自由アプローチを提案する。
提案するアーキテクチャは設計上は単純で,各解像度で移動像を順次ワープし,最終的に固定像に整列する。
システム全体はエンドツーエンドで、スクラッチから各2つのイメージに最適化されている。
論文 参考訳(メタデータ) (2022-02-01T15:17:17Z) - Deblurring via Stochastic Refinement [85.42730934561101]
条件付き拡散モデルに基づくブラインドデブロアリングのための代替フレームワークを提案する。
提案手法は,PSNRなどの歪み指標の点で競合する。
論文 参考訳(メタデータ) (2021-12-05T04:36:09Z) - Learning Discriminative Shrinkage Deep Networks for Image Deconvolution [122.79108159874426]
本稿では,これらの用語を暗黙的にモデル化する識別的縮小関数を学習することで,効果的に非盲検デコンボリューション手法を提案する。
実験結果から,提案手法は最先端の手法に対して,効率と精度の点で好適に動作することがわかった。
論文 参考訳(メタデータ) (2021-11-27T12:12:57Z) - Conditional Variational Autoencoder for Learned Image Reconstruction [5.487951901731039]
本研究では,未知画像の後部分布を問合せ観測で近似する新しいフレームワークを開発する。
暗黙のノイズモデルと先行処理を処理し、データ生成プロセス(フォワード演算子)を組み込み、学習された再構成特性は異なるデータセット間で転送可能である。
論文 参考訳(メタデータ) (2021-10-22T10:02:48Z) - Deep Unfolded Recovery of Sub-Nyquist Sampled Ultrasound Image [94.42139459221784]
本稿では,ISTAアルゴリズムの展開に基づく時空間領域におけるサブNyquistサンプルからの再構成手法を提案する。
本手法は,高品質な撮像性能を確保しつつ,配列要素数,サンプリングレート,計算時間を削減できる。
論文 参考訳(メタデータ) (2021-03-01T19:19:38Z) - Learning Frequency Domain Approximation for Binary Neural Networks [68.79904499480025]
フーリエ周波数領域における符号関数の勾配を正弦関数の組み合わせを用いて推定し,BNNの訓練を行う。
いくつかのベンチマークデータセットとニューラルネットワークの実験により、この手法で学習したバイナリネットワークが最先端の精度を達成することが示されている。
論文 参考訳(メタデータ) (2021-03-01T08:25:26Z) - Sampling possible reconstructions of undersampled acquisitions in MR
imaging [9.75702493778194]
MR中のk-空間のアンサンプは時間を節約するが、結果として不適切な逆転問題が発生し、可能な限り無限の画像が生成される。
伝統的に、これは、選択された正規化や事前に従って、このソリューションセットから1つの「ベスト」イメージを検索することで、再構成問題として取り組まれる。
そこで本研究では,逆変換プロセスにおける不確実性を捉えるために,取得モデルと選択した条件下で可能な複数の画像を返却する手法を提案する。
論文 参考訳(メタデータ) (2020-09-30T18:20:06Z) - Solving Phase Retrieval with a Learned Reference [18.76940558836028]
フーリエ位相探索は、フーリエ係数の振幅測定から画像の回復を扱う古典的な問題である。
本稿では、振幅測定を行う前に、既知の(学習した)参照を信号に追加すると仮定する。
本手法はホログラフィーに参照信号を追加する原理に着想を得たものである。
論文 参考訳(メタデータ) (2020-07-29T06:17:25Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
磁気共鳴画像(MRI)の異常検出は教師なし手法で行うことができる。
本研究では,変分オートエンコーダの潜伏空間における相似関数の計算に基づいて,腫瘍検出のためのスライスワイズ半教師法を提案する。
本研究では,高解像度画像上でのモデルをトレーニングし,再現の質を向上させることにより,異なるベースラインに匹敵する結果が得られることを示す。
論文 参考訳(メタデータ) (2020-07-24T14:02:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。