論文の概要: Dynamical Deep Generative Latent Modeling of 3D Skeletal Motion
- arxiv url: http://arxiv.org/abs/2106.10393v1
- Date: Fri, 18 Jun 2021 23:58:49 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-22 15:35:45.332513
- Title: Dynamical Deep Generative Latent Modeling of 3D Skeletal Motion
- Title(参考訳): 3次元骨格運動の動的深部生成的潜在モデル
- Authors: Amirreza Farnoosh, Sarah Ostadabbas
- Abstract要約: 本モデルでは,高度に相関した骨格データを時間的変化の空間的基礎の集合に分解する。
これにより、3次元ポーズデータのダイナミックスにおいて意味のある内在状態を解析する動的深部生成潜在モデルが得られる。
- 参考スコア(独自算出の注目度): 15.359134407309726
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In this paper, we propose a Bayesian switching dynamical model for
segmentation of 3D pose data over time that uncovers interpretable patterns in
the data and is generative. Our model decomposes highly correlated skeleton
data into a set of few spatial basis of switching temporal processes in a
low-dimensional latent framework. We parameterize these temporal processes with
regard to a switching deep vector autoregressive prior in order to accommodate
both multimodal and higher-order nonlinear inter-dependencies. This results in
a dynamical deep generative latent model that parses the meaningful intrinsic
states in the dynamics of 3D pose data using approximate variational inference,
and enables a realistic low-level dynamical generation and segmentation of
complex skeleton movements. Our experiments on four biological motion data
containing bat flight, salsa dance, walking, and golf datasets substantiate
superior performance of our model in comparison with the state-of-the-art
methods.
- Abstract(参考訳): 本稿では,データの解釈可能なパターンを明らかにし,生成可能な3次元ポーズデータのセグメンテーションのためのベイズ切替動的モデルを提案する。
本モデルは,高相関な骨格データを低次元潜在フレームワークにおける時間的プロセスの切り替えの空間的基礎の集合に分解する。
マルチモーダルおよび高次非線形相互依存性の両方に対応するために, 切替深部ベクトル自己回帰に関する時間過程をパラメータ化する。
これにより,3次元ポーズデータのダイナミックスにおける意味的内在状態を近似的変動推論を用いて解析し,複雑な骨格運動の現実的な低レベルな動的生成とセグメンテーションを可能にする。
コウモリ,サルサダンス,ウォーキング,ゴルフデータセットを含む4つの生体運動データを用いた実験は,最先端の手法と比較して,モデルの優れた性能を実証する。
関連論文リスト
- Equivariant Graph Neural Operator for Modeling 3D Dynamics [148.98826858078556]
我々は,次のステップの予測ではなく,ダイナミックスを直接トラジェクトリとしてモデル化するために,Equivariant Graph Neural Operator (EGNO)を提案する。
EGNOは3次元力学の時間的進化を明示的に学習し、時間とともに関数として力学を定式化し、それを近似するためにニューラル演算子を学習する。
粒子シミュレーション、人間のモーションキャプチャー、分子動力学を含む複数の領域における総合的な実験は、既存の手法と比較して、EGNOの極めて優れた性能を示す。
論文 参考訳(メタデータ) (2024-01-19T21:50:32Z) - EmerNeRF: Emergent Spatial-Temporal Scene Decomposition via
Self-Supervision [85.17951804790515]
EmerNeRFは動的駆動シーンの時空間表現を学習するためのシンプルだが強力なアプローチである。
シーンの幾何学、外観、動き、セマンティクスを自己ブートストラップで同時にキャプチャする。
本手法はセンサシミュレーションにおける最先端性能を実現する。
論文 参考訳(メタデータ) (2023-11-03T17:59:55Z) - Unsupervised 3D Pose Estimation with Non-Rigid Structure-from-Motion
Modeling [83.76377808476039]
本研究では,人間のポーズの変形をモデル化し,それに伴う拡散に基づく動きを事前に設計する手法を提案する。
動作中の3次元人間の骨格を復元する作業は3次元基準骨格の推定に分割する。
混合時空間NASfMformerを用いて、各フレームの3次元基準骨格と骨格変形を2次元観測シーケンスから同時に推定する。
論文 参考訳(メタデータ) (2023-08-18T16:41:57Z) - Discovering Dynamic Patterns from Spatiotemporal Data with Time-Varying
Low-Rank Autoregression [12.923271427789267]
低ランクテンソル因子化により係数がパラメータ化される時間還元ベクトル自己回帰モデルを開発した。
時間的文脈において、複雑な時間変化系の挙動は、提案モデルにおける時間的モードによって明らかにすることができる。
論文 参考訳(メタデータ) (2022-11-28T15:59:52Z) - Data-driven low-dimensional dynamic model of Kolmogorov flow [0.0]
流れのダイナミクスを捉える低次モデル (ROM) はシミュレーションの計算コストの削減に重要である。
この研究は、フローのダイナミクスと特性を効果的にキャプチャする最小次元モデルのためのデータ駆動フレームワークを示す。
我々はこれをカオス的かつ断続的な行動からなる体制におけるコルモゴロフ流に適用する。
論文 参考訳(メタデータ) (2022-10-29T23:05:39Z) - Gait Recognition in the Wild with Multi-hop Temporal Switch [81.35245014397759]
野生での歩行認識は、より実践的な問題であり、マルチメディアとコンピュータビジョンのコミュニティの注目を集めています。
本稿では,現実のシーンにおける歩行パターンの効果的な時間的モデリングを実現するために,新しいマルチホップ時間スイッチ方式を提案する。
論文 参考訳(メタデータ) (2022-09-01T10:46:09Z) - Scene Synthesis via Uncertainty-Driven Attribute Synchronization [52.31834816911887]
本稿では,3次元シーンの多様な特徴パターンを捉えるニューラルシーン合成手法を提案する。
提案手法は,ニューラルネットワークと従来のシーン合成手法の双方の長所を結合する。
論文 参考訳(メタデータ) (2021-08-30T19:45:07Z) - Analysis of ODE2VAE with Examples [0.0]
通常微分方程式変分オートエンコーダ(ODE2VAE)は、潜時変分モデルである。
モデルが意味のある潜在表現をある程度学習できることを示す。
論文 参考訳(メタデータ) (2021-08-10T20:12:26Z) - Multi-frame sequence generator of 4D human body motion [0.0]
本稿では,翻訳と回転を含むグローバルな移動をエンコードする自動エンコーダに基づく生成フレームワークと,単一遅延空間ベクトルとしての多フレーム時間運動を提案する。
本研究は,低誤差境界内でのヒト形態素の4次元配列の再構成能力について検証した。
また,最初の人間のフレームから将来のフレームの4次元動作予測を行う手法の利点についても述べる。
論文 参考訳(メタデータ) (2021-06-07T13:56:46Z) - Graph-based Normalizing Flow for Human Motion Generation and
Reconstruction [20.454140530081183]
過去の情報と制御信号に基づく長地平線運動系列を合成・再構築する確率生成モデルを提案する。
足踏み解析と骨長解析を併用したモーションキャプチャデータセットを用いたモデル評価を行った。
論文 参考訳(メタデータ) (2021-04-07T09:51:15Z) - Disentangling and Unifying Graph Convolutions for Skeleton-Based Action
Recognition [79.33539539956186]
本稿では,マルチスケールグラフ畳み込みと,G3Dという空間時間グラフ畳み込み演算子を結合する簡単な方法を提案する。
これらの提案を結合することにより,MS-G3Dという強力な特徴抽出器を開発し,そのモデルが3つの大規模データセット上で従来の最先端手法より優れていることを示す。
論文 参考訳(メタデータ) (2020-03-31T11:28:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。