A Causal Framework for Non-Linear Quantum Mechanics
- URL: http://arxiv.org/abs/2106.10576v2
- Date: Wed, 9 Mar 2022 13:50:55 GMT
- Title: A Causal Framework for Non-Linear Quantum Mechanics
- Authors: David E. Kaplan and Surjeet Rajendran
- Abstract summary: We show that the resulting low-energy theory, non-linear quantum mechanics, is causal, preserves probability and permits a consistent description of the process of measurement.
We show that non-linear quantum effects can be observed in macroscopic systems even in the presence of de-coherence.
Non-linear quantum mechanics also enables novel gravitational phenomena and may open new directions to solve the black hole information problem.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We add non-linear and state-dependent terms to quantum field theory. We show
that the resulting low-energy theory, non-linear quantum mechanics, is causal,
preserves probability and permits a consistent description of the process of
measurement. We explore the consequences of such terms and show that non-linear
quantum effects can be observed in macroscopic systems even in the presence of
de-coherence. We find that current experimental bounds on these non-linearities
are weak and propose several experimental methods to significantly probe these
effects. The locally exploitable effects of these non-linearities have enormous
technological implications. For example, they would allow large scale
parallelization of computing (in fact, any other effort) and enable quantum
sensing beyond the standard quantum limit. We also expose a fundamental
vulnerability of any non-linear modification of quantum mechanics - these
modifications are highly sensitive to cosmic history and their locally
exploitable effects can dynamically disappear if the observed universe has a
tiny overlap with the overall quantum state of the universe, as is predicted in
conventional inflationary cosmology. We identify observables that persist in
this case and discuss opportunities to detect them in cosmic ray experiments,
tests of strong field general relativity and current probes of the equation of
state of the universe. Non-linear quantum mechanics also enables novel
gravitational phenomena and may open new directions to solve the black hole
information problem and uncover the theory underlying quantum field theory and
gravitation.
Related papers
- Entropy production due to spacetime fluctuations [0.0]
We consider a non-relativistic quantum system interacting with gravitational waves.
We employ the consistent histories approach to quantum mechanics to define a fluctuation relation for this system.
As a result, thermodynamic entropy must be produced in the system due to its unavoidable interaction with the quantum fluctuations of spacetime.
arXiv Detail & Related papers (2024-07-30T20:52:32Z) - Table-top nanodiamond interferometer enabling quantum gravity tests [34.82692226532414]
We present a feasibility study for a table-top nanodiamond-based interferometer.
By relying on quantum superpositions of steady massive objects our interferometer may allow exploiting just small-range electromagnetic fields.
arXiv Detail & Related papers (2024-05-31T17:20:59Z) - Quantum gravity inspired nonlocal quantum dynamics preserving the classical limit [0.03970441202645725]
Nonlocal modifications of quantum mechanics can be found at non-relativistic energies.
We show that classical limits of quantum probability densities and free energy remain unaffected up to energies comparable with the nonlocality scale.
arXiv Detail & Related papers (2024-05-24T13:33:51Z) - Causality and a possible interpretation of quantum mechanics [2.7398542529968477]
Based on quantum field theory, our work provides a framework that harmoniously integrates relativistic causality, quantum non-locality, and quantum measurement.
We use reduced density matrices to represent the local information of the quantum state and show that the reduced density matrices cannot evolve superluminally.
Unlike recent approaches that focus on causality by introducing new operators to describe detectors, we consider that everything--including detectors, environments, and humans--is composed of the same fundamental fields.
arXiv Detail & Related papers (2024-02-08T07:07:22Z) - Embezzling entanglement from quantum fields [41.94295877935867]
Embezzlement of entanglement refers to the counterintuitive possibility of extracting entangled quantum states from a reference state of an auxiliary system.
We uncover a deep connection between the operational task of embezzling entanglement and the mathematical classification of von Neumann algebras.
arXiv Detail & Related papers (2024-01-14T13:58:32Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - On tests of the quantum nature of gravitational interactions in presence
of non-linear corrections to quantum mechanics [6.138671548064356]
We show that entanglement dynamics can occur in the presence of a weak quantum interaction and non-linear corrections to local quantum mechanics.
This highlights the importance of going beyond entanglement detection to conclusively test the quantum character of gravity.
arXiv Detail & Related papers (2023-02-01T10:49:31Z) - Simulation of Collective Neutrino Oscillations on a Quantum Computer [117.44028458220427]
We present the first simulation of a small system of interacting neutrinos using current generation quantum devices.
We introduce a strategy to overcome limitations in the natural connectivity of the qubits and use it to track the evolution of entanglement in real-time.
arXiv Detail & Related papers (2021-02-24T20:51:25Z) - Quantum Hall phase emerging in an array of atoms interacting with
photons [101.18253437732933]
Topological quantum phases underpin many concepts of modern physics.
Here, we reveal that the quantum Hall phase with topological edge states, spectral Landau levels and Hofstadter butterfly can emerge in a simple quantum system.
Such systems, arrays of two-level atoms (qubits) coupled to light being described by the classical Dicke model, have recently been realized in experiments with cold atoms and superconducting qubits.
arXiv Detail & Related papers (2020-03-18T14:56:39Z) - Entropic Uncertainty Relations and the Quantum-to-Classical transition [77.34726150561087]
We aim to shed some light on the quantum-to-classical transition as seen through the analysis of uncertainty relations.
We employ entropic uncertainty relations to show that it is only by the inclusion of imprecision in our model of macroscopic measurements that we can prepare a system with two simultaneously well-defined quantities.
arXiv Detail & Related papers (2020-03-04T14:01:17Z) - Probing the Universality of Topological Defect Formation in a Quantum
Annealer: Kibble-Zurek Mechanism and Beyond [46.39654665163597]
We report on experimental tests of topological defect formation via the one-dimensional transverse-field Ising model.
We find that the quantum simulator results can indeed be explained by the KZM for open-system quantum dynamics with phase-flip errors.
This implies that the theoretical predictions of the generalized KZM theory, which assumes isolation from the environment, applies beyond its original scope to an open system.
arXiv Detail & Related papers (2020-01-31T02:55:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.