Plant Disease Detection Using Image Processing and Machine Learning
- URL: http://arxiv.org/abs/2106.10698v1
- Date: Sun, 20 Jun 2021 14:11:24 GMT
- Title: Plant Disease Detection Using Image Processing and Machine Learning
- Authors: Pranesh Kulkarni, Atharva Karwande, Tejas Kolhe, Soham Kamble, Akshay
Joshi, Medha Wyawahare
- Abstract summary: This paper proposes a smart and efficient technique for detection of crop disease which uses computer vision and machine learning techniques.
The proposed system is able to detect 20 different diseases of 5 common plants with 93% accuracy.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: One of the important and tedious task in agricultural practices is the
detection of the disease on crops. It requires huge time as well as skilled
labor. This paper proposes a smart and efficient technique for detection of
crop disease which uses computer vision and machine learning techniques. The
proposed system is able to detect 20 different diseases of 5 common plants with
93% accuracy.
Related papers
- A Novel Feature Extraction Model for the Detection of Plant Disease from Leaf Images in Low Computational Devices [2.1990652930491854]
The proposed approach integrates various types of Deep Learning techniques to extract robust and discriminative features from leaf images.
The dataset contains 10,000 leaf photos from ten classes of tomato illnesses and one class of healthy leaves.
AlexNet has an accuracy score of 87%, with the benefit of being quick and lightweight, making it appropriate for use on embedded systems.
arXiv Detail & Related papers (2024-10-01T19:32:45Z) - PlantSeg: A Large-Scale In-the-wild Dataset for Plant Disease Segmentation [37.383095056084834]
Plant disease datasets typically lack segmentation labels.
Unlike typical datasets that contain images from laboratory settings, PlantSeg primarily comprises in-the-wild plant disease images.
PlantSeg is extensive, featuring 11,400 images with disease segmentation masks and an additional 8,000 healthy plant images categorized by plant type.
arXiv Detail & Related papers (2024-09-06T06:11:28Z) - Multi-Class Plant Leaf Disease Detection: A CNN-based Approach with Mobile App Integration [0.0]
Plant diseases significantly impact agricultural productivity, resulting in economic losses and food insecurity.
This study investigates advanced techniques in plant disease detection, emphasizing the integration of image processing, machine learning, deep learning methods, and mobile technologies.
High-resolution images of plant leaves were captured and analyzed using convolutional neural networks (CNNs) to detect symptoms of various diseases, such as blight, mildew, and rust.
The model was trained on a diverse dataset encompassing multiple crops and disease types, achieving 98.14% accuracy in disease diagnosis.
arXiv Detail & Related papers (2024-08-26T07:16:41Z) - AMaizeD: An End to End Pipeline for Automatic Maize Disease Detection [0.0]
AMaizeD is an automated framework for early detection of diseases in maize crops using multispectral imagery obtained from drones.
The proposed framework employs a combination of convolutional neural networks (CNNs) as feature extractors and segmentation techniques to identify both the maize plants and their associated diseases.
arXiv Detail & Related papers (2023-07-23T19:58:40Z) - Detection of healthy and diseased crops in drone captured images using
Deep Learning [0.0]
Disruptions in the plant's normal state, caused by diseases, often interfere with essential plant activities.
We propose a deep learning-based approach for efficient detection of plant diseases using drone-captured imagery.
arXiv Detail & Related papers (2023-05-22T21:15:12Z) - Semantic Image Segmentation with Deep Learning for Vine Leaf Phenotyping [59.0626764544669]
In this study, we use Deep Learning methods to semantically segment grapevine leaves images in order to develop an automated object detection system for leaf phenotyping.
Our work contributes to plant lifecycle monitoring through which dynamic traits such as growth and development can be captured and quantified.
arXiv Detail & Related papers (2022-10-24T14:37:09Z) - A workflow for segmenting soil and plant X-ray CT images with deep
learning in Googles Colaboratory [45.99558884106628]
We develop a modular workflow for applying convolutional neural networks to X-ray microCT images.
We show how parameters can be optimized to achieve best results using example scans from walnut leaves, almond flower buds, and a soil aggregate.
arXiv Detail & Related papers (2022-03-18T00:47:32Z) - Unsupervised deep learning techniques for powdery mildew recognition
based on multispectral imaging [63.62764375279861]
This paper presents a deep learning approach to automatically recognize powdery mildew on cucumber leaves.
We focus on unsupervised deep learning techniques applied to multispectral imaging data.
We propose the use of autoencoder architectures to investigate two strategies for disease detection.
arXiv Detail & Related papers (2021-12-20T13:29:13Z) - One-Shot Learning with Triplet Loss for Vegetation Classification Tasks [45.82374977939355]
Triplet loss function is one of the options that can significantly improve the accuracy of the One-shot Learning tasks.
Starting from 2015, many projects use Siamese networks and this kind of loss for face recognition and object classification.
arXiv Detail & Related papers (2020-12-14T10:44:22Z) - Synergic Adversarial Label Learning for Grading Retinal Diseases via
Knowledge Distillation and Multi-task Learning [29.46896757506273]
Well-qualified doctors annotated images are very expensive and only a limited amount of data is available for various retinal diseases.
Some studies show that AMD and DR share some common features like hemorrhagic points and exudation but most classification algorithms only train those disease models independently.
We propose a method called synergic adversarial label learning (SALL) which leverages relevant retinal disease labels in both semantic and feature space as additional signals and train the model in a collaborative manner.
arXiv Detail & Related papers (2020-03-24T01:32:04Z) - Plant Disease Detection from Images [0.0]
This research focuses on creating a deep learning model that detects the type of disease that affected the plant from the images of the leaves of the plants.
The model is created using transfer learning and is experimented with both resnet 34 and resnet 50 to demonstrate that discriminative learning gives better results.
arXiv Detail & Related papers (2020-03-05T02:17:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.