Paddy Disease Detection and Classification Using Computer Vision Techniques: A Mobile Application to Detect Paddy Disease
- URL: http://arxiv.org/abs/2412.05996v1
- Date: Sun, 08 Dec 2024 17:08:27 GMT
- Title: Paddy Disease Detection and Classification Using Computer Vision Techniques: A Mobile Application to Detect Paddy Disease
- Authors: Bimarsha Khanal, Paras Poudel, Anish Chapagai, Bijan Regmi, Sitaram Pokhrel, Salik Ram Khanal,
- Abstract summary: Plant diseases significantly impact our food supply, causing problems for farmers, economies reliant on agriculture, and global food security.
Despite advancements in agricultural technology, a precise and early diagnosis remains a challenge.
Adopting Deep Learning applications can assist in accurately identifying diseases without needing plant pathologists.
- Score: 0.0
- License:
- Abstract: Plant diseases significantly impact our food supply, causing problems for farmers, economies reliant on agriculture, and global food security. Accurate and timely plant disease diagnosis is crucial for effective treatment and minimizing yield losses. Despite advancements in agricultural technology, a precise and early diagnosis remains a challenge, especially in underdeveloped regions where agriculture is crucial and agricultural experts are scarce. However, adopting Deep Learning applications can assist in accurately identifying diseases without needing plant pathologists. In this study, the effectiveness of various computer vision models for detecting paddy diseases is evaluated and proposed the best deep learning-based disease detection system. Both classification and detection using the Paddy Doctor dataset, which contains over 20,000 annotated images of paddy leaves for disease diagnosis are tested and evaluated. For detection, we utilized the YOLOv8 model-based model were used for paddy disease detection and CNN models and the Vision Transformer were used for disease classification. The average mAP50 of 69% for detection tasks was achieved and the Vision Transformer classification accuracy was 99.38%. It was found that detection models are effective at identifying multiple diseases simultaneously with less computing power, whereas classification models, though computationally expensive, exhibit better performance for classifying single diseases. Additionally, a mobile application was developed to enable farmers to identify paddy diseases instantly. Experiments with the app showed encouraging results in utilizing the trained models for both disease classification and treatment guidance.
Related papers
- PlantSeg: A Large-Scale In-the-wild Dataset for Plant Disease Segmentation [37.383095056084834]
Plant disease datasets typically lack segmentation labels.
Unlike typical datasets that contain images from laboratory settings, PlantSeg primarily comprises in-the-wild plant disease images.
PlantSeg is extensive, featuring 11,400 images with disease segmentation masks and an additional 8,000 healthy plant images categorized by plant type.
arXiv Detail & Related papers (2024-09-06T06:11:28Z) - Multi-Class Plant Leaf Disease Detection: A CNN-based Approach with Mobile App Integration [0.0]
Plant diseases significantly impact agricultural productivity, resulting in economic losses and food insecurity.
This study investigates advanced techniques in plant disease detection, emphasizing the integration of image processing, machine learning, deep learning methods, and mobile technologies.
High-resolution images of plant leaves were captured and analyzed using convolutional neural networks (CNNs) to detect symptoms of various diseases, such as blight, mildew, and rust.
The model was trained on a diverse dataset encompassing multiple crops and disease types, achieving 98.14% accuracy in disease diagnosis.
arXiv Detail & Related papers (2024-08-26T07:16:41Z) - Benchmarking In-the-wild Multimodal Disease Recognition and A Versatile Baseline [42.49727243388804]
We propose an in-the-wild multimodal plant disease recognition dataset.
It contains the largest number of disease classes but also text-based descriptions for each disease.
Our proposed dataset can be regarded as an ideal testbed for evaluating disease recognition methods in the real world.
arXiv Detail & Related papers (2024-08-06T11:49:13Z) - Using Pre-training and Interaction Modeling for ancestry-specific disease prediction in UK Biobank [69.90493129893112]
Recent genome-wide association studies (GWAS) have uncovered the genetic basis of complex traits, but show an under-representation of non-European descent individuals.
Here, we assess whether we can improve disease prediction across diverse ancestries using multiomic data.
arXiv Detail & Related papers (2024-04-26T16:39:50Z) - Paddy Doctor: A Visual Image Dataset for Paddy Disease Classification [0.0]
Paddy Doctor is a visual image dataset for identifying paddy diseases.
Our dataset contains 13,876 annotated paddy leaf images across ten classes (nine diseases and normal leaf)
We benchmarked the Paddy Doctor using a Convolutional Neural Network (CNN) and two transfer learning approaches, VGG16 and MobileNet.
arXiv Detail & Related papers (2022-05-23T07:57:40Z) - Unsupervised deep learning techniques for powdery mildew recognition
based on multispectral imaging [63.62764375279861]
This paper presents a deep learning approach to automatically recognize powdery mildew on cucumber leaves.
We focus on unsupervised deep learning techniques applied to multispectral imaging data.
We propose the use of autoencoder architectures to investigate two strategies for disease detection.
arXiv Detail & Related papers (2021-12-20T13:29:13Z) - Plant Disease Detection Using Image Processing and Machine Learning [0.0]
This paper proposes a smart and efficient technique for detection of crop disease which uses computer vision and machine learning techniques.
The proposed system is able to detect 20 different diseases of 5 common plants with 93% accuracy.
arXiv Detail & Related papers (2021-06-20T14:11:24Z) - Leaf Image-based Plant Disease Identification using Color and Texture
Features [0.1657441317977376]
The accuracy on a self-collected dataset is 82.47% for disease identification and 91.40% for healthy and diseased classification.
This prototype system can be extended by adding more disease categories or targeting specific crop or disease categories.
arXiv Detail & Related papers (2021-02-08T20:32:56Z) - One-Shot Learning with Triplet Loss for Vegetation Classification Tasks [45.82374977939355]
Triplet loss function is one of the options that can significantly improve the accuracy of the One-shot Learning tasks.
Starting from 2015, many projects use Siamese networks and this kind of loss for face recognition and object classification.
arXiv Detail & Related papers (2020-12-14T10:44:22Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z) - The Plant Pathology 2020 challenge dataset to classify foliar disease of
apples [0.0]
Apple orchards in the U.S. are under constant threat from a large number of pathogens and insects. Appropriate and timely deployment of disease management depends on early disease detection.
We have manually captured 3,651 high-quality, real-life symptom images of multiple apple foliar diseases.
A subset, expert-annotated to create a pilot dataset for apple scab, cedar apple rust, and healthy leaves, was made available to the Kaggle community for 'Plant Pathology Challenge'
arXiv Detail & Related papers (2020-04-24T19:36:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.