論文の概要: 3D Object Detection for Autonomous Driving: A Survey
- arxiv url: http://arxiv.org/abs/2106.10823v1
- Date: Mon, 21 Jun 2021 03:17:20 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-23 04:16:20.544439
- Title: 3D Object Detection for Autonomous Driving: A Survey
- Title(参考訳): 自動運転のための3次元物体検出:調査
- Authors: Rui Qian, Xin Lai, Xirong Li
- Abstract要約: 3次元物体検出は、そのような知覚システムの中核となる基礎となる。
既存の努力にもかかわらず、ポイントクラウド上の3Dオブジェクト検出はまだ初期段階にある。
近年, プロスとコンスを用いた最先端検出法が提案されている。
- 参考スコア(独自算出の注目度): 14.772968858398043
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Autonomous driving is regarded as one of the most promising remedies to
shield human beings from severe crashes. To this end, 3D object detection
serves as the core basis of such perception system especially for the sake of
path planning, motion prediction, collision avoidance, etc. Generally, stereo
or monocular images with corresponding 3D point clouds are already standard
layout for 3D object detection, out of which point clouds are increasingly
prevalent with accurate depth information being provided. Despite existing
efforts, 3D object detection on point clouds is still in its infancy due to
high sparseness and irregularity of point clouds by nature, misalignment view
between camera view and LiDAR bird's eye of view for modality synergies,
occlusions and scale variations at long distances, etc. Recently, profound
progress has been made in 3D object detection, with a large body of literature
being investigated to address this vision task. As such, we present a
comprehensive review of the latest progress in this field covering all the main
topics including sensors, fundamentals, and the recent state-of-the-art
detection methods with their pros and cons. Furthermore, we introduce metrics
and provide quantitative comparisons on popular public datasets. The avenues
for future work are going to be judiciously identified after an in-deep
analysis of the surveyed works. Finally, we conclude this paper.
- Abstract(参考訳): 自動運転は、人間を深刻な事故から守る最も有望な治療法の1つである。
この目的のために、3次元物体検出は、特に経路計画、動き予測、衝突回避等のために、そのような認識システムの中核となる基礎となる。
一般に、対応する3Dポイントクラウドを持つステレオ画像やモノクル画像は、既に3Dオブジェクト検出の標準的なレイアウトであり、その中の1つが正確な深度情報を提供するようになってきている。
既存の試みにもかかわらず、点雲上の3dオブジェクト検出は、自然による点雲のばらつきや不規則さ、カメラビューとライダーバードの眼の視差によるモダリティ相乗効果、オクルージョン、遠距離でのスケール変動などにより、まだ初期段階にある。
近年,3次元物体検出において大きな進歩がみられ,このビジョン課題に対処するために大量の文献が研究されている。
そこで本研究では,センサ,基本,最新の最先端検出手法など,その長所と短所を網羅する分野の最新動向を総合的に概観する。
さらに,一般的な公開データセットについて,メトリクスを導入し,定量的比較を行う。
今後の研究の道筋は、調査対象の作品を深く分析した結果、公平に特定されるだろう。
最後に、本論文をまとめる。
関連論文リスト
- Robustness-Aware 3D Object Detection in Autonomous Driving: A Review and Outlook [19.539295469044813]
本研究は,現実シナリオ下での知覚システム評価において,精度と遅延とともに頑健性の重要性を強調した。
我々の研究は、カメラのみ、LiDARのみ、マルチモーダルな3Dオブジェクト検出アルゴリズムを広範囲に調査し、精度、レイテンシ、堅牢性の間のトレードオフを徹底的に評価する。
これらのうち、多モード3D検出手法は優れた堅牢性を示し、新しい分類法を導入し、文献を改良して明瞭性を高める。
論文 参考訳(メタデータ) (2024-01-12T12:35:45Z) - Deep learning for 3D Object Detection and Tracking in Autonomous
Driving: A Brief Survey [3.224562109592693]
3Dポイントのクラウド学習は、他のあらゆるタイプの自動運転データの中で、ますます注目を集めている。
本稿では,3次元物体検出・追跡のためのディープラーニング手法の最近の進歩を示す。
論文 参考訳(メタデータ) (2023-11-10T13:03:37Z) - SOGDet: Semantic-Occupancy Guided Multi-view 3D Object Detection [19.75965521357068]
本稿では,SOGDet(Semantic-Occupancy Guided Multi-view Object Detection)と呼ばれる新しい手法を提案する。
以上の結果から,SOGDet は nuScenes Detection Score (NDS) と平均平均精度 (mAP) の3つのベースライン法の性能を一貫して向上させることがわかった。
これは、3Dオブジェクト検出と3Dセマンティック占有の組み合わせが、3D環境をより包括的に認識し、より堅牢な自律運転システムの構築を支援することを示唆している。
論文 参考訳(メタデータ) (2023-08-26T07:38:21Z) - DetZero: Rethinking Offboard 3D Object Detection with Long-term
Sequential Point Clouds [55.755450273390004]
既存のオフボード3D検出器は、無限の逐次点雲を利用するために常にモジュラーパイプライン設計に従っている。
その結果, 物体の運動状態は, 物体中心の精製段階において必然的な課題となること, 物体の運動状態は, 物体軌道を十分に生成できないこと, 物体中心の精製段階において必然的な課題となること, の2つの理由から, オフボード型3D検出器の完全なポテンシャルは明らかにされていないことがわかった。
これらの問題に対処するために,DetZero という,オフボード型3次元物体検出の新たなパラダイムを提案する。
論文 参考訳(メタデータ) (2023-06-09T16:42:00Z) - AGO-Net: Association-Guided 3D Point Cloud Object Detection Network [86.10213302724085]
ドメイン適応によるオブジェクトの無傷な特徴を関連付ける新しい3D検出フレームワークを提案する。
我々は,KITTIの3D検出ベンチマークにおいて,精度と速度の両面で最新の性能を実現する。
論文 参考訳(メタデータ) (2022-08-24T16:54:38Z) - 3D Object Detection for Autonomous Driving: A Comprehensive Survey [48.30753402458884]
自動運転車の近くで重要な3Dオブジェクトの位置、サイズ、カテゴリをインテリジェントに予測する3Dオブジェクト検出は、認識システムの重要な部分である。
本稿では,自律運転における3次元物体検出技術の進歩を概観する。
論文 参考訳(メタデータ) (2022-06-19T19:43:11Z) - Probabilistic and Geometric Depth: Detecting Objects in Perspective [78.00922683083776]
3次元物体検出は、運転支援システムなどの様々な実用用途で必要とされる重要な機能である。
双眼視やLiDARに頼っている従来の設定に比べて、経済的な解決策として単眼3D検出が注目されているが、それでも満足のいく結果が得られていない。
本稿ではまず,この問題に関する系統的研究を行い,現在の単分子3次元検出問題をインスタンス深度推定問題として単純化できることを考察する。
論文 参考訳(メタデータ) (2021-07-29T16:30:33Z) - Detecting Invisible People [58.49425715635312]
我々は,追跡ベンチマークを再利用し,目立たない物体を検出するための新しい指標を提案する。
私たちは、現在の検出および追跡システムがこのタスクで劇的に悪化することを実証します。
第2に,最先端の単眼深度推定ネットワークによる観測結果を用いて,3次元で明示的に推論する動的モデルを構築した。
論文 参考訳(メタデータ) (2020-12-15T16:54:45Z) - Associate-3Ddet: Perceptual-to-Conceptual Association for 3D Point Cloud
Object Detection [64.2159881697615]
3Dポイント雲からの物体検出は依然として難しい課題だが、最近の研究ではディープラーニング技術によって封筒を推し進めている。
本稿では,特徴表現の堅牢性を高めるために,ドメイン適応のようなアプローチを提案する。
我々の単純で効果的なアプローチは、3Dポイントクラウドオブジェクト検出の性能を根本的に向上させ、最先端の結果を達成する。
論文 参考訳(メタデータ) (2020-06-08T05:15:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。