Stratified Learning: A General-Purpose Statistical Method for Improved
Learning under Covariate Shift
- URL: http://arxiv.org/abs/2106.11211v2
- Date: Wed, 17 May 2023 12:22:56 GMT
- Title: Stratified Learning: A General-Purpose Statistical Method for Improved
Learning under Covariate Shift
- Authors: Maximilian Autenrieth, David A. van Dyk, Roberto Trotta, David C.
Stenning
- Abstract summary: We propose a simple, statistically principled, and theoretically justified method to improve supervised learning when the training set is not representative.
We build upon a well-established methodology in causal inference, and show that the effects of covariate shift can be reduced or eliminated by conditioning on propensity scores.
We demonstrate the effectiveness of our general-purpose method on two contemporary research questions in cosmology, outperforming state-of-the-art importance weighting methods.
- Score: 1.1470070927586016
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a simple, statistically principled, and theoretically justified
method to improve supervised learning when the training set is not
representative, a situation known as covariate shift. We build upon a
well-established methodology in causal inference, and show that the effects of
covariate shift can be reduced or eliminated by conditioning on propensity
scores. In practice, this is achieved by fitting learners within strata
constructed by partitioning the data based on the estimated propensity scores,
leading to approximately balanced covariates and much-improved target
prediction. We demonstrate the effectiveness of our general-purpose method on
two contemporary research questions in cosmology, outperforming
state-of-the-art importance weighting methods. We obtain the best reported AUC
(0.958) on the updated "Supernovae photometric classification challenge", and
we improve upon existing conditional density estimation of galaxy redshift from
Sloan Data Sky Survey (SDSS) data.
Related papers
- Enhancing Training Data Attribution for Large Language Models with Fitting Error Consideration [74.09687562334682]
We introduce a novel training data attribution method called Debias and Denoise Attribution (DDA)
Our method significantly outperforms existing approaches, achieving an averaged AUC of 91.64%.
DDA exhibits strong generality and scalability across various sources and different-scale models like LLaMA2, QWEN2, and Mistral.
arXiv Detail & Related papers (2024-10-02T07:14:26Z) - Multi-Agent Reinforcement Learning from Human Feedback: Data Coverage and Algorithmic Techniques [65.55451717632317]
We study Multi-Agent Reinforcement Learning from Human Feedback (MARLHF), exploring both theoretical foundations and empirical validations.
We define the task as identifying Nash equilibrium from a preference-only offline dataset in general-sum games.
Our findings underscore the multifaceted approach required for MARLHF, paving the way for effective preference-based multi-agent systems.
arXiv Detail & Related papers (2024-09-01T13:14:41Z) - Enhancing Fairness through Reweighting: A Path to Attain the Sufficiency Rule [23.335423207588466]
We introduce an innovative approach to enhancing the empirical risk minimization process in model training.
This scheme aims to uphold the sufficiency rule in fairness by ensuring that optimal predictors maintain consistency across diverse sub-groups.
arXiv Detail & Related papers (2024-08-26T09:19:58Z) - TransFusion: Covariate-Shift Robust Transfer Learning for High-Dimensional Regression [11.040033344386366]
We propose a two-step method with a novel fused-regularizer to improve the learning performance on a target task with limited samples.
Nonasymptotic bound is provided for the estimation error of the target model.
We extend the method to a distributed setting, allowing for a pretraining-finetuning strategy.
arXiv Detail & Related papers (2024-04-01T14:58:16Z) - Gradient Reweighting: Towards Imbalanced Class-Incremental Learning [8.438092346233054]
Class-Incremental Learning (CIL) trains a model to continually recognize new classes from non-stationary data.
A major challenge of CIL arises when applying to real-world data characterized by non-uniform distribution.
We show that this dual imbalance issue causes skewed gradient updates with biased weights in FC layers, thus inducing over/under-fitting and catastrophic forgetting in CIL.
arXiv Detail & Related papers (2024-02-28T18:08:03Z) - Relaxed Contrastive Learning for Federated Learning [48.96253206661268]
We propose a novel contrastive learning framework to address the challenges of data heterogeneity in federated learning.
Our framework outperforms all existing federated learning approaches by huge margins on the standard benchmarks.
arXiv Detail & Related papers (2024-01-10T04:55:24Z) - TWINS: A Fine-Tuning Framework for Improved Transferability of
Adversarial Robustness and Generalization [89.54947228958494]
This paper focuses on the fine-tuning of an adversarially pre-trained model in various classification tasks.
We propose a novel statistics-based approach, Two-WIng NormliSation (TWINS) fine-tuning framework.
TWINS is shown to be effective on a wide range of image classification datasets in terms of both generalization and robustness.
arXiv Detail & Related papers (2023-03-20T14:12:55Z) - Adapting to Continuous Covariate Shift via Online Density Ratio Estimation [64.8027122329609]
Dealing with distribution shifts is one of the central challenges for modern machine learning.
We propose an online method that can appropriately reuse historical information.
Our density ratio estimation method is proven to perform well by enjoying a dynamic regret bound.
arXiv Detail & Related papers (2023-02-06T04:03:33Z) - Improving Covariance Conditioning of the SVD Meta-layer by Orthogonality [65.67315418971688]
Nearest Orthogonal Gradient (NOG) and Optimal Learning Rate (OLR) are proposed.
Experiments on visual recognition demonstrate that our methods can simultaneously improve the covariance conditioning and generalization.
arXiv Detail & Related papers (2022-07-05T15:39:29Z) - Imitation Learning by State-Only Distribution Matching [2.580765958706854]
Imitation Learning from observation describes policy learning in a similar way to human learning.
We propose a non-adversarial learning-from-observations approach, together with an interpretable convergence and performance metric.
arXiv Detail & Related papers (2022-02-09T08:38:50Z) - Stable Adversarial Learning under Distributional Shifts [46.98655899839784]
Machine learning algorithms with empirical risk minimization are vulnerable under distributional shifts.
We propose Stable Adversarial Learning (SAL) algorithm that leverages heterogeneous data sources to construct a more practical uncertainty set.
arXiv Detail & Related papers (2020-06-08T08:42:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.