Fast Simultaneous Gravitational Alignment of Multiple Point Sets
- URL: http://arxiv.org/abs/2106.11308v1
- Date: Mon, 21 Jun 2021 17:59:40 GMT
- Title: Fast Simultaneous Gravitational Alignment of Multiple Point Sets
- Authors: Vladislav Golyanik and Soshi Shimada and Christian Theobalt
- Abstract summary: This paper proposes a new resilient technique for simultaneous registration of multiple point sets by interpreting the latter as particle swarms rigidly moving in the mutually induced force fields.
Thanks to the improved simulation with altered physical laws and acceleration of globally multiply-linked point interactions, our Multi-Body Gravitational Approach (MBGA) is robust to noise and missing data.
In various experimental settings, MBGA is shown to outperform several baseline point set alignment approaches in terms of accuracy and runtime.
- Score: 82.32416743939004
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The problem of simultaneous rigid alignment of multiple unordered point sets
which is unbiased towards any of the inputs has recently attracted increasing
interest, and several reliable methods have been newly proposed. While being
remarkably robust towards noise and clustered outliers, current approaches
require sophisticated initialisation schemes and do not scale well to large
point sets. This paper proposes a new resilient technique for simultaneous
registration of multiple point sets by interpreting the latter as particle
swarms rigidly moving in the mutually induced force fields. Thanks to the
improved simulation with altered physical laws and acceleration of globally
multiply-linked point interactions with a 2^D-tree (D is the space
dimensionality), our Multi-Body Gravitational Approach (MBGA) is robust to
noise and missing data while supporting more massive point sets than previous
methods (with 10^5 points and more). In various experimental settings, MBGA is
shown to outperform several baseline point set alignment approaches in terms of
accuracy and runtime. We make our source code available for the community to
facilitate the reproducibility of the results.
Related papers
- A Bayesian Approach Toward Robust Multidimensional Ellipsoid-Specific Fitting [0.0]
This work presents a novel and effective method for fitting multidimensional ellipsoids to scattered data in the contamination of noise and outliers.
We incorporate a uniform prior distribution to constrain the search for primitive parameters within an ellipsoidal domain.
We apply it to a wide range of practical applications such as microscopy cell counting, 3D reconstruction, geometric shape approximation, and magnetometer calibration tasks.
arXiv Detail & Related papers (2024-07-27T14:31:51Z) - Correspondence-Free Non-Rigid Point Set Registration Using Unsupervised Clustering Analysis [28.18800845199871]
We present a novel non-rigid point set registration method inspired by unsupervised clustering analysis.
Our method achieves high accuracy results across various scenarios and surpasses competitors by a significant margin.
arXiv Detail & Related papers (2024-06-27T01:16:44Z) - Stable Neighbor Denoising for Source-free Domain Adaptive Segmentation [91.83820250747935]
Pseudo-label noise is mainly contained in unstable samples in which predictions of most pixels undergo significant variations during self-training.
We introduce the Stable Neighbor Denoising (SND) approach, which effectively discovers highly correlated stable and unstable samples.
SND consistently outperforms state-of-the-art methods in various SFUDA semantic segmentation settings.
arXiv Detail & Related papers (2024-06-10T21:44:52Z) - Multiway Point Cloud Mosaicking with Diffusion and Global Optimization [74.3802812773891]
We introduce a novel framework for multiway point cloud mosaicking (named Wednesday)
At the core of our approach is ODIN, a learned pairwise registration algorithm that identifies overlaps and refines attention scores.
Tested on four diverse, large-scale datasets, our method state-of-the-art pairwise and rotation registration results by a large margin on all benchmarks.
arXiv Detail & Related papers (2024-03-30T17:29:13Z) - Equivariant Deep Weight Space Alignment [54.65847470115314]
We propose a novel framework aimed at learning to solve the weight alignment problem.
We first prove that weight alignment adheres to two fundamental symmetries and then, propose a deep architecture that respects these symmetries.
arXiv Detail & Related papers (2023-10-20T10:12:06Z) - Towards Extremely Fast Bilevel Optimization with Self-governed
Convergence Guarantees [42.514612465664605]
We propose a single-level formulation to uniformly understand existing explicit and implicit Gradient-based BLOs.
A striking feature of our convergence result is that, compared to those original unaccelerated GBLO versions, the fast BAGDC admits a unified non-asymptotic convergence theory towards stationarity.
arXiv Detail & Related papers (2022-05-20T09:46:10Z) - Robust Multi-view Registration of Point Sets with Laplacian Mixture
Model [25.865100974015412]
We propose a novel probabilistic generative method to align multiple point sets based on the heavy-tailed Laplacian distribution.
We demonstrate the advantages of our method by comparing it with representative state-of-the-art approaches on benchmark challenging data sets.
arXiv Detail & Related papers (2021-10-26T14:49:09Z) - Finding Geometric Models by Clustering in the Consensus Space [61.65661010039768]
We propose a new algorithm for finding an unknown number of geometric models, e.g., homographies.
We present a number of applications where the use of multiple geometric models improves accuracy.
These include pose estimation from multiple generalized homographies; trajectory estimation of fast-moving objects.
arXiv Detail & Related papers (2021-03-25T14:35:07Z) - Fast Gravitational Approach for Rigid Point Set Registration with
Ordinary Differential Equations [79.71184760864507]
This article introduces a new physics-based method for rigid point set alignment called Fast Gravitational Approach (FGA)
In FGA, the source and target point sets are interpreted as rigid particle swarms with masses interacting in a globally multiply-linked manner while moving in a simulated gravitational force field.
We show that the new method class has characteristics not found in previous alignment methods.
arXiv Detail & Related papers (2020-09-28T15:05:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.