Extreme depolarization for any spin
- URL: http://arxiv.org/abs/2106.11680v2
- Date: Fri, 4 Mar 2022 17:14:14 GMT
- Title: Extreme depolarization for any spin
- Authors: J\'er\^ome Denis and John Martin
- Abstract summary: We study the depolarization, both isotropic and anisotropic, of a quantum spin of arbitrary spin quantum number $j$.
We establish a precise link between superdecoherence and entanglement.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The opportunity to build quantum technologies operating with elementary
quantum systems with more than two levels is now increasingly being examined,
not least because of the availability of such systems in the laboratory. It is
therefore essential to understand how these single systems initially in highly
non-classical states decohere on different time scales due to their coupling
with the environment. In this work, we consider the depolarization, both
isotropic and anisotropic, of a quantum spin of arbitrary spin quantum number
$j$ and focus on the study of the most superdecoherent states. We approach this
problem from the perspective of the collective dynamics of a system of $N=2j$
constituent spin-$1/2$, initially in a symmetric state, undergoing collective
depolarization. This allows us to use the powerful language of quantum
information theory to analyze the fading of quantum properties of spin states
caused by depolarization. In this framework, we establish a precise link
between superdecoherence and entanglement. We present extensive numerical
results on the scaling of the entanglement survival time with the Hilbert space
dimension for collective depolarization. We also highlight the specific role
played by anticoherent spin states and show how their Markovian isotropic
depolarization alone can lead to the generation of bound entangled states.
Related papers
- Certifying the quantumness of a nuclear spin qudit through its uniform precession [28.4073170440133]
We certify the quantumness of exotic states of a nuclear spin through its uniform precession.
The experiment is performed on a single spin-7/2 $123$Sb nucleus implanted in a silicon nanoelectronic device.
arXiv Detail & Related papers (2024-10-10T06:20:41Z) - Cavity Control of Topological Qubits: Fusion Rule, Anyon Braiding and Majorana-Schrödinger Cat States [39.58317527488534]
We investigate the impact of introducing a local cavity within the center of a topological chain.
This cavity induces a scissor-like effect that bisects the chain, liberating Majorana zero modes (MZMs) within the bulk.
By leveraging the symmetry properties of fermion modes within a two-site cavity, we propose a novel method for generating MZM-polariton Schr"odinger cat states.
arXiv Detail & Related papers (2024-09-06T18:00:00Z) - Resolving nonclassical magnon composition of a magnetic ground state via
a qubit [44.99833362998488]
We show that a direct dispersive coupling between a qubit and a noneigenmode magnon enables detecting the magnonic number states' quantum superposition.
This unique coupling is found to enable control over the equilibrium magnon squeezing and a deterministic generation of squeezed even Fock states.
arXiv Detail & Related papers (2023-06-08T09:30:04Z) - Orthonormal bases of extreme quantumness [1.1510009152620668]
Some coherent and anticoherent spin states are known as optimal quantum rotosensors.
We introduce a measure of quantumness for orthonormal bases of spin states, determined by the average anticoherence of individual vectors and the Wehrl entropy.
arXiv Detail & Related papers (2023-06-01T10:35:45Z) - Scalable spin squeezing in a dipolar Rydberg atom array [2.392520546501394]
We show how to enhance the precision of measurements beyond the standard quantum limit.
To do so, one can reshape the quantum projection noise -- a strategy known as squeezing.
We present two independent refinements: first, using a multistep spin-squeezing protocol allows us to further enhance the squeezing by approximately 1 dB, and second, leveraging Floquet engineering to realize Heisenberg interactions.
arXiv Detail & Related papers (2023-03-14T16:35:17Z) - Probing quantum entanglement from magnetic-sublevels populations: beyond
spin squeezing inequalities [0.0]
Spin squeezing inequalities (SSI) represent a major tool to probe quantum entanglement among a collection of few-level atoms.
Many experiments can image the populations in all Zeeman sublevels $s=-j, -j+1, dots, j$, potentially revealing finer features of quantum entanglement not captured by SSI.
Here we present a systematic approach which exploits Zeeman-sublevel population measurements in order to construct novel entanglement criteria.
arXiv Detail & Related papers (2022-03-25T10:09:46Z) - Partitioning dysprosium's electronic spin to reveal entanglement in
non-classical states [55.41644538483948]
We report on an experimental study of entanglement in dysprosium's electronic spin.
Our findings open up the possibility to engineer novel types of entangled atomic ensembles.
arXiv Detail & Related papers (2021-04-29T15:02:22Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - Extremal quantum states [0.41998444721319206]
We peruse quantumness from a variety of viewpoints, concentrating on phase-space formulations.
The symmetry-transcending properties of the Husimi $Q$ function make it our basic tool.
We use these quantities to formulate extremal principles and determine in this way which states are the most and least "quantum"
arXiv Detail & Related papers (2020-10-09T18:00:02Z) - Characterizing quantum correlations in spin chains [0.0]
We show that a single element of the density matrix carries the answer to how quantum is a chain of spins.
This method can be used to tailor and witness highly non-classical effects in many-body systems.
As a proof of principle, we investigate the extend of non-locality and entanglement in ground states and thermal states of experimentally accessible spin chains.
arXiv Detail & Related papers (2020-05-19T17:25:37Z) - Einselection from incompatible decoherence channels [62.997667081978825]
We analyze an open quantum dynamics inspired by CQED experiments with two non-commuting Lindblad operators.
We show that Fock states remain the most robust states to decoherence up to a critical coupling.
arXiv Detail & Related papers (2020-01-29T14:15:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.