論文の概要: Credal Self-Supervised Learning
- arxiv url: http://arxiv.org/abs/2106.11853v1
- Date: Tue, 22 Jun 2021 15:19:04 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-23 19:23:20.190258
- Title: Credal Self-Supervised Learning
- Title(参考訳): 自己教師付き学習
- Authors: Julian Lienen, Eyke H\"ullermeier
- Abstract要約: 未ラベルのインスタンスに対して,学習者が"擬似スーパービジョン"を生成する方法を示す。
整合性正規化と組み合わせて、擬似ラベルは様々な領域で有望な性能を示している。
我々は、我々の方法論を最先端のセルフスーパービジョンアプローチと比較する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Self-training is an effective approach to semi-supervised learning. The key
idea is to let the learner itself iteratively generate "pseudo-supervision" for
unlabeled instances based on its current hypothesis. In combination with
consistency regularization, pseudo-labeling has shown promising performance in
various domains, for example in computer vision. To account for the
hypothetical nature of the pseudo-labels, these are commonly provided in the
form of probability distributions. Still, one may argue that even a probability
distribution represents an excessive level of informedness, as it suggests that
the learner precisely knows the ground-truth conditional probabilities. In our
approach, we therefore allow the learner to label instances in the form of
credal sets, that is, sets of (candidate) probability distributions. Thanks to
this increased expressiveness, the learner is able to represent uncertainty and
a lack of knowledge in a more flexible and more faithful manner. To learn from
weakly labeled data of that kind, we leverage methods that have recently been
proposed in the realm of so-called superset learning. In an exhaustive
empirical evaluation, we compare our methodology to state-of-the-art
self-supervision approaches, showing competitive to superior performance
especially in low-label scenarios incorporating a high degree of uncertainty.
- Abstract(参考訳): 自己学習は半教師付き学習に効果的なアプローチである。
鍵となるアイデアは、学習者自身が現在の仮説に基づいてラベルのないインスタンスに対して反復的に"pseudo-supervision"を生成することである。
整合性正規化と組み合わせて、擬似ラベルはコンピュータビジョンなど、様々な領域で有望な性能を示している。
擬ラベルの仮説的性質を説明するために、これらは一般に確率分布の形で提供される。
それでも、確率分布でさえ過度なインフォメーションのレベルを表しており、学習者が根底的な条件付き確率を正確に知っていることを示唆している。
そこで本手法では, 学習者は, クレダル集合, すなわち (候補) 確率分布の集合の形で, インスタンスにラベルを付けることができる。
この表現力の増大により、学習者はより柔軟で忠実な方法で不確実性と知識の欠如を表現することができる。
弱ラベル付きデータから学習するために,我々は近年,いわゆるスーパーセット学習の領域で提案されている手法を活用する。
本手法を最先端の自己超越アプローチと比較し, 高い不確実性を考慮した低ラベルシナリオにおいて, 優れた性能と競争力を示す。
関連論文リスト
- Self-Knowledge Distillation for Learning Ambiguity [11.755814660833549]
最近の言語モデルは、その正確さを考慮せずに単一のラベルを過度に予測することが多い。
本稿では,ラベル分布をより正確に学習できる新しい自己知識蒸留法を提案する。
本手法を多種多様なNLUベンチマークデータセットで検証し,実験結果から,より優れたラベル分布を生成する上での有効性を実証した。
論文 参考訳(メタデータ) (2024-06-14T05:11:32Z) - Learning with Complementary Labels Revisited: The Selected-Completely-at-Random Setting Is More Practical [66.57396042747706]
補完ラベル学習は、弱教師付き学習問題である。
均一分布仮定に依存しない一貫したアプローチを提案する。
相補的なラベル学習は、負のラベル付きバイナリ分類問題の集合として表現できる。
論文 参考訳(メタデータ) (2023-11-27T02:59:17Z) - Binary Classification with Confidence Difference [100.08818204756093]
本稿では,信頼性差分法 (ConfDiff) という,弱教師付き二項分類問題について考察する。
本稿では,この問題に対処するためのリスク一貫性のあるアプローチを提案し,推定誤差が最適収束率と一致することを示す。
また,整合性や収束率も証明されたオーバーフィッティング問題を緩和するためのリスク補正手法も導入する。
論文 参考訳(メタデータ) (2023-10-09T11:44:50Z) - Robust Representation Learning for Unreliable Partial Label Learning [86.909511808373]
部分ラベル学習(Partial Label Learning, PLL)は、弱い教師付き学習の一種で、各トレーニングインスタンスに候補ラベルのセットが割り当てられる。
これはUn Reliable partial Label Learning (UPLL) と呼ばれ、部分ラベルの本質的な信頼性の欠如とあいまいさにより、さらなる複雑さをもたらす。
本研究では,信頼できない部分ラベルに対するモデル強化を支援するために,信頼性に欠けるコントラスト学習を活用するUnreliability-Robust Representation Learning framework(URRL)を提案する。
論文 参考訳(メタデータ) (2023-08-31T13:37:28Z) - Class-Distribution-Aware Pseudo Labeling for Semi-Supervised Multi-Label
Learning [97.88458953075205]
Pseudo-labelingは、ラベルなしデータを利用するための人気で効果的なアプローチとして登場した。
本稿では,クラスアウェアの擬似ラベル処理を行うCAP(Class-Aware Pseudo-Labeling)という新しい手法を提案する。
論文 参考訳(メタデータ) (2023-05-04T12:52:18Z) - Uncertainty-aware Label Distribution Learning for Facial Expression
Recognition [13.321770808076398]
本研究では,不確実性と曖昧性に対する深層モデルのロバスト性を改善するために,新しい不確実性を考慮したラベル分布学習法を提案する。
本手法は深層ネットワークに容易に組み込んで,より訓練の監督と認識精度の向上を図ることができる。
論文 参考訳(メタデータ) (2022-09-21T15:48:41Z) - Going Beyond One-Hot Encoding in Classification: Can Human Uncertainty
Improve Model Performance? [14.610038284393166]
ラベルの不確実性は、分散ラベルを介してトレーニングプロセスに明示的に組み込まれていることを示す。
ラベルの不確実性の取り込みは、モデルが見つからないデータをより一般化し、モデルの性能を向上させるのに役立ちます。
既存のキャリブレーション法と同様に、分布ラベルはより良いキャリブレーションの確率をもたらし、それによってより確実で信頼できる予測が得られる。
論文 参考訳(メタデータ) (2022-05-30T17:19:11Z) - Conformal Credal Self-Supervised Learning [7.170735702082675]
半教師付き学習において、自己学習のパラダイムとは、学習者自身が提案する擬似ラベルから学習することを指す。
そのような方法の1つは、いわゆるクレダル自己教師学習であり、ラベル上の(単体ではなく)確率分布の集合の形で擬超越性を維持している。
論文 参考訳(メタデータ) (2022-05-30T16:53:16Z) - Learning with Proper Partial Labels [87.65718705642819]
部分ラベル学習は、不正確なラベルを持つ弱い教師付き学習の一種である。
この適切な部分ラベル学習フレームワークには,従来の部分ラベル学習設定が数多く含まれていることを示す。
次に、分類リスクの統一的非バイアス推定器を導出する。
論文 参考訳(メタデータ) (2021-12-23T01:37:03Z) - Contrastive Learning for Fair Representations [50.95604482330149]
訓練された分類モデルは、意図せずバイアスのある表現や予測につながる可能性がある。
対戦訓練のような既存の分類モデルのデバイアス化手法は、訓練に高価であり、最適化が困難であることが多い。
比較学習を取り入れたバイアス軽減手法を提案し、同じクラスラベルを共有するインスタンスに類似した表現を推奨する。
論文 参考訳(メタデータ) (2021-09-22T10:47:51Z) - An Effective Baseline for Robustness to Distributional Shift [5.627346969563955]
ディープラーニングシステムの安全なデプロイには,トレーニング中に見られるものと異なる入力のカテゴリに直面した場合,確実な予測を控えることが重要な要件である。
本論文では, 吸収の原理を用いた分布異常検出の簡便かつ高効率な手法を提案する。
論文 参考訳(メタデータ) (2021-05-15T00:46:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。