論文の概要: Going Beyond One-Hot Encoding in Classification: Can Human Uncertainty
Improve Model Performance?
- arxiv url: http://arxiv.org/abs/2205.15265v1
- Date: Mon, 30 May 2022 17:19:11 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-31 14:41:46.895820
- Title: Going Beyond One-Hot Encoding in Classification: Can Human Uncertainty
Improve Model Performance?
- Title(参考訳): 分類におけるワンホットエンコーディングを超えて:人間の不確実性はモデルパフォーマンスを改善するか?
- Authors: Christoph Koller, G\"oran Kauermann, Xiao Xiang Zhu
- Abstract要約: ラベルの不確実性は、分散ラベルを介してトレーニングプロセスに明示的に組み込まれていることを示す。
ラベルの不確実性の取り込みは、モデルが見つからないデータをより一般化し、モデルの性能を向上させるのに役立ちます。
既存のキャリブレーション法と同様に、分布ラベルはより良いキャリブレーションの確率をもたらし、それによってより確実で信頼できる予測が得られる。
- 参考スコア(独自算出の注目度): 14.610038284393166
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Technological and computational advances continuously drive forward the broad
field of deep learning. In recent years, the derivation of quantities
describing theuncertainty in the prediction - which naturally accompanies the
modeling process - has sparked general interest in the deep learning community.
Often neglected in the machine learning setting is the human uncertainty that
influences numerous labeling processes. As the core of this work, label
uncertainty is explicitly embedded into the training process via distributional
labels. We demonstrate the effectiveness of our approach on image
classification with a remote sensing data set that contains multiple label
votes by domain experts for each image: The incorporation of label uncertainty
helps the model to generalize better to unseen data and increases model
performance. Similar to existing calibration methods, the distributional labels
lead to better-calibrated probabilities, which in turn yield more certain and
trustworthy predictions.
- Abstract(参考訳): 技術と計算の進歩は、ディープラーニングの幅広い分野を継続的に前進させる。
近年,モデリングプロセスに自然に伴う予測の不確かさを記述する量の導出が,深層学習コミュニティに対する一般の関心を喚起している。
機械学習の設定でしばしば無視されるのは、多くのラベル付けプロセスに影響を与える人間の不確実性である。
この作業の中核として、ラベルの不確実性は、ディストリビューションラベルを介してトレーニングプロセスに明示的に埋め込まれます。
本稿では,各画像に対する領域の専門家による複数のラベル投票を含むリモートセンシングデータセットを用いた画像分類におけるアプローチの有効性を示す。
既存のキャリブレーション法と同様に、分布ラベルはより良いキャリブレーションの確率をもたらし、それによってより確実で信頼できる予測が得られる。
関連論文リスト
- Learning with Confidence: Training Better Classifiers from Soft Labels [0.0]
教師付き機械学習では、モデルは通常、ハードラベルを持つデータ、すなわちクラスメンバーシップの明確な割り当てを用いて訓練される。
クラスラベル上の離散確率分布として表されるラベルの不確実性を組み込むことで,分類モデルの予測性能が向上するかどうかを検討する。
論文 参考訳(メタデータ) (2024-09-24T13:12:29Z) - Uncertainty-aware self-training with expectation maximization basis transformation [9.7527450662978]
モデルとデータセットの両方の不確実性情報を組み合わせるための,新たな自己学習フレームワークを提案する。
具体的には,ラベルをスムースにし,不確実性情報を包括的に推定するために期待最大化(EM)を提案する。
論文 参考訳(メタデータ) (2024-05-02T11:01:31Z) - Probabilistic Test-Time Generalization by Variational Neighbor-Labeling [62.158807685159736]
本稿では、ドメインの一般化を試み、モデルが未確認のターゲットドメインにデプロイされる前に、ソースドメインにのみトレーニングされる。
ソーストレーニングされたモデルをテスト時にターゲットドメインに一般化するための、ターゲットサンプルの擬似ラベル化の確率。
より堅牢な擬似ラベルを生成するために、近隣のターゲットサンプルの情報を含む変分隣接ラベル。
論文 参考訳(メタデータ) (2023-07-08T18:58:08Z) - Semi-Supervised Deep Regression with Uncertainty Consistency and
Variational Model Ensembling via Bayesian Neural Networks [31.67508478764597]
我々は,半教師付き回帰,すなわち不確実連続変分モデル組立(UCVME)に対する新しいアプローチを提案する。
整合性損失は不確実性評価を著しく改善し,不整合回帰の下では,高品質な擬似ラベルをより重要視することができる。
実験の結果,本手法は様々なタスクにおける最先端の代替手段よりも優れており,フルラベルを用いた教師付き手法と競合する可能性が示唆された。
論文 参考訳(メタデータ) (2023-02-15T10:40:51Z) - SoftMatch: Addressing the Quantity-Quality Trade-off in Semi-supervised
Learning [101.86916775218403]
本稿では, サンプル重み付けを統一した定式化により, 一般的な擬似ラベル法を再検討する。
トレーニング中の擬似ラベルの量と質を両立させることでトレードオフを克服するSoftMatchを提案する。
実験では、画像、テキスト、不均衡な分類など、さまざまなベンチマークで大幅に改善されている。
論文 参考訳(メタデータ) (2023-01-26T03:53:25Z) - Uncertainty-aware Label Distribution Learning for Facial Expression
Recognition [13.321770808076398]
本研究では,不確実性と曖昧性に対する深層モデルのロバスト性を改善するために,新しい不確実性を考慮したラベル分布学習法を提案する。
本手法は深層ネットワークに容易に組み込んで,より訓練の監督と認識精度の向上を図ることができる。
論文 参考訳(メタデータ) (2022-09-21T15:48:41Z) - Debiased Pseudo Labeling in Self-Training [77.83549261035277]
ディープニューラルネットワークは、大規模ラベル付きデータセットの助けを借りて、幅広いタスクで顕著なパフォーマンスを達成する。
ラベル付きデータの要求を軽減するため、ラベル付けされていないデータに擬似ラベルを付けることにより、学術と産業の両方で自己学習が広く使われている。
疑似ラベルの生成と利用を2つの独立した頭文字で分離するデバイアスドを提案する。
論文 参考訳(メタデータ) (2022-02-15T02:14:33Z) - Learning with Proper Partial Labels [87.65718705642819]
部分ラベル学習は、不正確なラベルを持つ弱い教師付き学習の一種である。
この適切な部分ラベル学習フレームワークには,従来の部分ラベル学習設定が数多く含まれていることを示す。
次に、分類リスクの統一的非バイアス推定器を導出する。
論文 参考訳(メタデータ) (2021-12-23T01:37:03Z) - Credal Self-Supervised Learning [0.0]
未ラベルのインスタンスに対して,学習者が"擬似スーパービジョン"を生成する方法を示す。
整合性正規化と組み合わせて、擬似ラベルは様々な領域で有望な性能を示している。
我々は、我々の方法論を最先端のセルフスーパービジョンアプローチと比較する。
論文 参考訳(メタデータ) (2021-06-22T15:19:04Z) - In Defense of Pseudo-Labeling: An Uncertainty-Aware Pseudo-label
Selection Framework for Semi-Supervised Learning [53.1047775185362]
Pseudo-labeling (PL) は一般的な SSL アプローチで、この制約はありませんが、当初の処方では比較的不十分です。
PLは不整合モデルからの誤った高い信頼度予測により性能が低下していると論じる。
そこで本研究では,疑似ラベリング精度を向上させるための不確実性認識型擬似ラベル選択(ups)フレームワークを提案する。
論文 参考訳(メタデータ) (2021-01-15T23:29:57Z) - Out-distribution aware Self-training in an Open World Setting [62.19882458285749]
オープンワールド環境ではラベルのないデータを活用して予測性能をさらに向上します。
注意深いサンプル選択戦略を含む,自己学習を意識したアウト・ディストリビューションを導入する。
当社の分類器は、設計外分布を意識しており、タスク関連の入力と無関係な入力を区別できます。
論文 参考訳(メタデータ) (2020-12-21T12:25:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。