論文の概要: Graph coarsening: From scientific computing to machine learning
- arxiv url: http://arxiv.org/abs/2106.11863v1
- Date: Tue, 22 Jun 2021 15:31:50 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-23 14:39:09.361608
- Title: Graph coarsening: From scientific computing to machine learning
- Title(参考訳): グラフの粗大化:科学計算から機械学習へ
- Authors: Jie Chen, Yousef Saad and Zechen Zhang
- Abstract要約: 本研究の目的は,科学計算に成功している粗大化手法を幅広く検討することである。
機械学習では、グラフ粗化は、グラフダウンサンプリングやグラフリダクションなど、様々な名前で呼ばれる。
このように、これらの方法の一般的な戦略は、粗グラフを定義するためにスペクトル特性に依存することである。
- 参考スコア(独自算出の注目度): 11.728753892489776
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The general method of graph coarsening or graph reduction has been a
remarkably useful and ubiquitous tool in scientific computing and it is now
just starting to have a similar impact in machine learning. The goal of this
paper is to take a broad look into coarsening techniques that have been
successfully deployed in scientific computing and see how similar principles
are finding their way in more recent applications related to machine learning.
In scientific computing, coarsening plays a central role in algebraic multigrid
methods as well as the related class of multilevel incomplete LU
factorizations. In machine learning, graph coarsening goes under various names,
e.g., graph downsampling or graph reduction. Its goal in most cases is to
replace some original graph by one which has fewer nodes, but whose structure
and characteristics are similar to those of the original graph. As will be
seen, a common strategy in these methods is to rely on spectral properties to
define the coarse graph.
- Abstract(参考訳): グラフ粗化やグラフ縮小の一般的な方法は、科学計算において驚くほど有用でユビキタスなツールであり、機械学習にも同様の影響を与え始めている。
この論文の目的は、科学計算でうまく展開された粗粒化手法を広く検討し、機械学習に関連する最近のアプリケーションにおいて、類似した原則がいかにその道筋を見出しているかを確認することである。
科学計算において、粗化は代数的乗法や関連する多レベル不完全LU因子のクラスにおいて中心的な役割を果たす。
機械学習では、グラフ粗化はグラフダウンサンプリングやグラフリダクションなど、様々な名前で呼ばれる。
ほとんどの場合の目標は、元のグラフを、ノードが少ないが、その構造と特性が元のグラフと似ているグラフに置き換えることである。
このように、これらの方法の一般的な戦略は、粗グラフを定義するためにスペクトル特性に依存することである。
関連論文リスト
- From Cluster Assumption to Graph Convolution: Graph-based Semi-Supervised Learning Revisited [51.24526202984846]
グラフベースの半教師付き学習(GSSL)は、長い間ホットな研究トピックだった。
グラフ畳み込みネットワーク (GCN) は, 有望な性能を示す主要な技術となっている。
論文 参考訳(メタデータ) (2023-09-24T10:10:21Z) - A Gromov--Wasserstein Geometric View of Spectrum-Preserving Graph
Coarsening [19.09507367362567]
この研究はグラフの粗大化を別の観点から研究し、グラフ距離を保存する理論を発展させた。
幾何学的アプローチは、グラフ分類や回帰のようなグラフの集合を扱う際に有用である。
この差を最小化するには、一般的な重み付きカーネル$K$-means法を用いる。
論文 参考訳(メタデータ) (2023-06-15T04:47:26Z) - Spectral Augmentations for Graph Contrastive Learning [50.149996923976836]
コントラスト学習は、監督の有無にかかわらず、表現を学習するための第一の方法として現れてきた。
近年の研究では、グラフ表現学習における事前学習の有用性が示されている。
本稿では,グラフの対照的な目的に対する拡張を構築する際に,候補のバンクを提供するためのグラフ変換操作を提案する。
論文 参考訳(メタデータ) (2023-02-06T16:26:29Z) - State of the Art and Potentialities of Graph-level Learning [54.68482109186052]
グラフレベルの学習は、比較、回帰、分類など、多くのタスクに適用されている。
グラフの集合を学習する伝統的なアプローチは、サブストラクチャのような手作りの特徴に依存している。
ディープラーニングは、機能を自動的に抽出し、グラフを低次元表現に符号化することで、グラフレベルの学習をグラフの規模に適応させるのに役立っている。
論文 参考訳(メタデータ) (2023-01-14T09:15:49Z) - A Unified Framework for Optimization-Based Graph Coarsening [5.720402020129441]
大きなグラフが与えられたとき、グラフ粗化は、もともと与えられたグラフの特性を保ちながら、より小さく抽出可能なグラフを学習することを目的としている。
提案するフレームワークは,グラフ学習と次元減少の一体化にある。
学習された粗大化グラフは、元のグラフと類似した$epsin(0,1)$であることが確立されている。
論文 参考訳(メタデータ) (2022-10-02T06:31:42Z) - Learning node embeddings via summary graphs: a brief theoretical
analysis [55.25628709267215]
グラフ表現学習は多くのグラフマイニングアプリケーションにおいて重要な役割を果たすが、大規模なグラフの埋め込みを学習することは依然として問題である。
最近の研究は、グラフの要約(つまり、より小さな要約グラフへの埋め込みを学習し、元のグラフのノード埋め込みを復元することでスケーラビリティを向上させる。
本稿では,導入したカーネル行列に基づく3つの特定の埋め込み学習手法について,詳細な理論的解析を行う。
論文 参考訳(メタデータ) (2022-07-04T04:09:50Z) - Malware Analysis with Symbolic Execution and Graph Kernel [2.1377923666134113]
機械学習に基づく分類のためのオープンソースのツールチェーンを提案する。
グラフ間の局所的な類似性を捉えることができる1次元Weisfeiler-Lehmanカーネルに焦点を当てる。
論文 参考訳(メタデータ) (2022-04-12T08:52:33Z) - Synthetic Graph Generation to Benchmark Graph Learning [7.914804101579097]
グラフ学習アルゴリズムは多くのグラフ解析タスクで最先端のパフォーマンスを達成した。
1つの理由は、グラフ学習アルゴリズムのパフォーマンスをベンチマークするために実際に使用されるデータセットが極めて少ないためである。
本稿では,合成グラフの生成と,制御シナリオにおけるグラフ学習アルゴリズムの挙動について検討する。
論文 参考訳(メタデータ) (2022-04-04T10:48:32Z) - Scaling R-GCN Training with Graph Summarization [71.06855946732296]
リレーショナルグラフ畳み込みネットワーク(R-GCN)のトレーニングは、グラフのサイズに合わない。
本研究では,グラフの要約手法を用いてグラフを圧縮する実験を行った。
AIFB, MUTAG, AMデータセットについて妥当な結果を得た。
論文 参考訳(メタデータ) (2022-03-05T00:28:43Z) - Bringing Your Own View: Graph Contrastive Learning without Prefabricated
Data Augmentations [94.41860307845812]
Self-supervisionは最近、グラフ学習の新しいフロンティアに力を入れている。
GraphCLは、グラフデータ拡張のアドホックな手作業による選択によって反映されたプレハブ付きプリファブリックを使用する。
グラフ生成器のパラメータ空間における学習可能な連続前処理へと拡張した。
我々は、情報最小化(InfoMin)と情報ボトルネック(InfoBN)の2つの原則を利用して、学習した事前情報を規則化する。
論文 参考訳(メタデータ) (2022-01-04T15:49:18Z) - Graph Coarsening with Neural Networks [8.407217618651536]
本稿では、粗いアルゴリズムの品質を測定するためのフレームワークを提案し、目標に応じて、粗いグラフ上のLaplace演算子を慎重に選択する必要があることを示す。
粗いグラフに対する現在のエッジウェイト選択が準最適である可能性が示唆され、グラフニューラルネットワークを用いて重み付けマップをパラメータ化し、教師なし方法で粗い品質を改善するよう訓練する。
論文 参考訳(メタデータ) (2021-02-02T06:50:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。