Light-matter interactions in chip-integrated niobium nano-circuit arrays
at optical fibre communication frequencies
- URL: http://arxiv.org/abs/2106.11961v1
- Date: Tue, 22 Jun 2021 17:59:01 GMT
- Title: Light-matter interactions in chip-integrated niobium nano-circuit arrays
at optical fibre communication frequencies
- Authors: Kaveh Delfanazari, and Otto L. Muskens
- Abstract summary: We introduce subwavelength photonic nano-grating circuit arrays on the facet of niobium thin films to enhance light-matter interaction at fiber optic communication.
We find that optical resonance shifts to longer wavelengths with increasing nano-grating circuit periodicity, indicating a clear modulation of optical light with geometrical parameters of the device.
The observed tunable plasmonic photo-response in such compact and integrated nano-circuitry enables new types of metamaterial and plasmonics-based modulators, sensors, and bolometer devices.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The interplay between electronic properties and optical response enables the
realization of novel types of materials with tunable responses. Superconductors
are well known to exhibit profound changes in the electronic structure related
to the formation of Cooper pairs, yet their influence on the electromagnetic
response in the optical regime has remained largely unstudied. Photonics
metamaterials offer new opportunities to enhance the light-matter interaction,
boosting the influence of subtle effects on the optical response. The
combination of photonic metamaterials and superconducting quantum circuits will
have the potential to advance quantum computing and quantum communication
technologies. Here, we introduce subwavelength photonic nano-grating circuit
arrays on the facet of niobium thin films to enhance light-matter interaction
at fiber optic communication frequencies. We find that optical resonance shifts
to longer wavelengths with increasing nano-grating circuit periodicity,
indicating a clear modulation of optical light with geometrical parameters of
the device. Next to the prominent subwavelength resonance, we find a second
feature consisting of adjacent dip and peak appears at slightly shorter
wavelengths around the diffraction condition Py= lambda, corresponding to the
Wood and Rayleigh anomalies of the first order grating diffraction. The
observed tunable plasmonic photo-response in such compact and integrated
nano-circuitry enables new types of metamaterial and plasmonics-based
modulators, sensors, and bolometer devices.
Related papers
- Principles for Optimizing Quantum Transduction in Piezo-Optomechanical Systems [0.0]
Two-way microwave-optical quantum transduction essential to connecting distant superconducting qubits via optical fiber.
Two-way quantum transducer converts between microwave photons and telecom-band photons by way of intermediary GHz-band phonon mode.
In this work, we examine both the piezoelectric, and optomechanical interactions from first principles, and together with the evanescent coupling between optical modes, discuss what parameters matter most in optimizing this kind of quantum transducer.
arXiv Detail & Related papers (2023-12-07T20:14:37Z) - Direct observation of non-linear optical phase shift induced by a single
quantum emitter in a waveguide [2.3776015607838747]
We experimentally realize an optical phase shift of $0.19 pi pm 0.03$ radians using a weak coherent state interacting with a single quantum dot.
The nonlinear process is sensitive at the single-photon level and can be made compatible with scalable photonic integrated circuitry.
arXiv Detail & Related papers (2023-05-11T14:32:12Z) - Quantum-limited millimeter wave to optical transduction [50.663540427505616]
Long distance transmission of quantum information is a central ingredient of distributed quantum information processors.
Current approaches to transduction employ solid state links between electrical and optical domains.
We demonstrate quantum-limited transduction of millimeter-wave (mmwave) photons into optical photons using cold $85$Rb atoms as the transducer.
arXiv Detail & Related papers (2022-07-20T18:04:26Z) - High-efficiency microwave-optical quantum transduction based on a cavity
electro-optic superconducting system with long coherence time [52.77024349608834]
Frequency conversion between microwave and optical photons is a key enabling technology to create links between superconducting quantum processors.
We propose a microwave-optical platform based on long-coherence-time superconducting radio-frequency (SRF) cavities.
We show that the fidelity of heralded entanglement generation between two remote quantum systems is enhanced by the low microwave losses.
arXiv Detail & Related papers (2022-06-30T17:57:37Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z) - Quantum coherent microwave-optical transduction using high overtone bulk
acoustic resonances [6.467198007912785]
A device capable of converting single quanta of the microwave field to the optical domain is an outstanding endeavour.
We present a new transduction scheme that could satisfy the requirements for quantum coherent bidirectional transduction.
Our scheme relies on an intermediary mechanical mode, a high overtone bulk acoustic resonance (HBAR), to coherently couple microwave and optical photons.
arXiv Detail & Related papers (2021-02-28T11:45:37Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z) - Quantum transduction of optical photons from a superconducting qubit [0.0]
We demonstrate the conversion of a microwave-frequency excitation of a superconducting transmon qubit into an optical photon.
With proposed improvements in the device and external measurement set-up, such quantum transducers may lead to practical devices capable of realizing new hybrid quantum networks.
arXiv Detail & Related papers (2020-04-09T22:34:40Z) - Coupling colloidal quantum dots to gap waveguides [62.997667081978825]
coupling between single photon emitters and integrated photonic circuits is an emerging topic relevant for quantum information science and other nanophotonic applications.
We investigate the coupling between a hybrid system of colloidal quantum dots and propagating gap modes of a silicon nitride waveguide system.
arXiv Detail & Related papers (2020-03-30T21:18:27Z) - Interaction signatures and non-Gaussian photon states from a strongly
driven atomic ensemble coupled to a nanophotonic waveguide [0.0]
We study theoretically a laser-driven one-dimensional chain of atoms interfaced with the guided optical modes of a nanophotonic waveguide.
We find that the fluorescence excitation line shape changes as the number of atoms is increased, eventually undergoing a splitting that provides evidence for the waveguide-mediated all-to-all interactions.
arXiv Detail & Related papers (2020-03-03T16:13:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.