論文の概要: Towards Consistent Predictive Confidence through Fitted Ensembles
- arxiv url: http://arxiv.org/abs/2106.12070v1
- Date: Tue, 22 Jun 2021 21:32:31 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-24 15:34:52.292222
- Title: Towards Consistent Predictive Confidence through Fitted Ensembles
- Title(参考訳): 組立による一貫性のある予測信頼を目指して
- Authors: Navid Kardan, Ankit Sharma and Kenneth O. Stanley
- Abstract要約: 本稿では,OOD実例が存在する場合に,分類器の性能を測定するための分離可能な概念学習フレームワークを提案する。
我々は、より一貫した深層モデルの予測信頼度を高めるために、より強力なベースラインを新たに提示する。
- 参考スコア(独自算出の注目度): 6.371992222487036
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep neural networks are behind many of the recent successes in machine
learning applications. However, these models can produce overconfident
decisions while encountering out-of-distribution (OOD) examples or making a
wrong prediction. This inconsistent predictive confidence limits the
integration of independently-trained learning models into a larger system. This
paper introduces separable concept learning framework to realistically measure
the performance of classifiers in presence of OOD examples. In this setup,
several instances of a classifier are trained on different parts of a partition
of the set of classes. Later, the performance of the combination of these
models is evaluated on a separate test set. Unlike current OOD detection
techniques, this framework does not require auxiliary OOD datasets and does not
separate classification from detection performance. Furthermore, we present a
new strong baseline for more consistent predictive confidence in deep models,
called fitted ensembles, where overconfident predictions are rectified by
transformed versions of the original classification task. Fitted ensembles can
naturally detect OOD examples without requiring auxiliary data by observing
contradicting predictions among its components. Experiments on MNIST, SVHN,
CIFAR-10/100, and ImageNet show fitted ensemble significantly outperform
conventional ensembles on OOD examples and are possible to scale.
- Abstract(参考訳): ディープニューラルネットワークは、機械学習アプリケーションにおける最近の成功の多くの背後にある。
しかし、これらのモデルは、アウト・オブ・ディストリビューション(OOD)の例に直面したり、間違った予測を行ったりしながら、過信な決定を下すことができる。
この一貫性のない予測信頼は、独立に訓練された学習モデルのより大きなシステムへの統合を制限する。
本稿では,OODを例として,分類器の性能を現実的に測定する,分離可能な概念学習フレームワークを提案する。
このセットアップでは、クラスセットの分割の異なる部分に分類器のいくつかのインスタンスがトレーニングされる。
その後、これらのモデルの組み合わせの性能を別個のテストセットで評価する。
現在のOOD検出技術とは異なり、このフレームワークは補助的なOODデータセットを必要としない。
さらに,従来の分類タスクの変換バージョンによって過信予測が修正されるような,深層モデルのより一貫した予測信頼度向上のための新たな強力なベースラインを提案する。
フィットしたアンサンブルは、コンポーネント間の矛盾する予測を観察することによって補助的なデータを必要としないOODサンプルを自然に検出することができる。
MNIST、SVHN、CIFAR-10/100、ImageNetの実験では、OODの従来のアンサンブルよりもはるかに優れており、スケール可能である。
関連論文リスト
- Non-Linear Outlier Synthesis for Out-of-Distribution Detection [5.019613806273252]
本稿では,拡散モデル埋め込み空間で直接操作することで,合成外乱器の品質を向上させるNCISを提案する。
これらの改良により,標準的な ImageNet100 および CIFAR100 ベンチマークにおいて,最先端の OOD 検出結果が得られた。
論文 参考訳(メタデータ) (2024-11-20T09:47:29Z) - DPU: Dynamic Prototype Updating for Multimodal Out-of-Distribution Detection [10.834698906236405]
機械学習モデルの堅牢性を保証するためには、アウト・オブ・ディストリビューション(OOD)検出が不可欠である。
マルチモーダルモデルの最近の進歩は、検出性能を高めるために複数のモダリティを活用する可能性を示している。
マルチモーダルOOD検出のための新しいプラグイン・アンド・プレイフレームワークであるDynamic Prototype Updating (DPU)を提案する。
論文 参考訳(メタデータ) (2024-11-12T22:43:16Z) - Scalable Ensemble Diversification for OOD Generalization and Detection [68.8982448081223]
SEDは、ハエのハードトレーニングサンプルを特定し、アンサンブルメンバーにこれらについて意見の一致を奨励する。
モデル間でのペアの相違を解消する既存の方法において,コストのかかる計算を避ける方法を示す。
OODの一般化のために,出力空間(古典的)アンサンブルや重量空間アンサンブル(モデルスープ)など,複数の環境での多様化による大きなメリットを観察する。
論文 参考訳(メタデータ) (2024-09-25T10:30:24Z) - Towards Calibrated Robust Fine-Tuning of Vision-Language Models [97.19901765814431]
本研究は、視覚言語モデルにおいて、OOD精度と信頼性校正の両方を同時に改善する頑健な微調整法を提案する。
OOD分類とOOD校正誤差は2つのIDデータからなる共有上限を持つことを示す。
この知見に基づいて,最小の特異値を持つ制約付きマルチモーダルコントラスト損失を用いて微調整を行う新しいフレームワークを設計する。
論文 参考訳(メタデータ) (2023-11-03T05:41:25Z) - Large Class Separation is not what you need for Relational
Reasoning-based OOD Detection [12.578844450586]
Out-Of-Distribution (OOD) 検出法はセマンティックノベルティを識別して解を提供する。
これらの手法の多くは、既知のデータの学習段階を利用しており、これは正規性の概念を捉えるためのモデル(または微調整)を訓練することを意味する。
実行可能な代替手段は、大きな事前訓練されたモデルによって生成された埋め込み空間の類似性を評価することであり、それ以上の学習は行わない。
論文 参考訳(メタデータ) (2023-07-12T14:10:15Z) - Pseudo-OOD training for robust language models [78.15712542481859]
OOD検出は、あらゆる産業規模のアプリケーションに対する信頼性の高い機械学習モデルの鍵となるコンポーネントである。
In-distribution(IND)データを用いて擬似OODサンプルを生成するPOORE-POORE-POSthoc pseudo-Ood Regularizationを提案する。
我々は3つの現実世界の対話システムに関する枠組みを広く評価し、OOD検出における新たな最先端技術を実現した。
論文 参考訳(メタデータ) (2022-10-17T14:32:02Z) - Contrastive Learning for Fair Representations [50.95604482330149]
訓練された分類モデルは、意図せずバイアスのある表現や予測につながる可能性がある。
対戦訓練のような既存の分類モデルのデバイアス化手法は、訓練に高価であり、最適化が困難であることが多い。
比較学習を取り入れたバイアス軽減手法を提案し、同じクラスラベルを共有するインスタンスに類似した表現を推奨する。
論文 参考訳(メタデータ) (2021-09-22T10:47:51Z) - EARLIN: Early Out-of-Distribution Detection for Resource-efficient
Collaborative Inference [4.826988182025783]
協調推論により、リソース制約のあるエッジデバイスは、入力をサーバにアップロードすることで推論を行うことができる。
このセットアップは、成功した推論のためにコスト効率よく機能するが、モデルがトレーニングされていない入力サンプルに直面すると、非常にパフォーマンスが低下する。
我々は,事前訓練されたCNNモデルの浅い層から重要な特徴を抽出する,新しい軽量OOD検出手法を提案する。
論文 参考訳(メタデータ) (2021-06-25T18:43:23Z) - Mean Embeddings with Test-Time Data Augmentation for Ensembling of
Representations [8.336315962271396]
表現のアンサンブルを考察し、MeTTA(Test-time augmentation)を用いた平均埋め込みを提案する。
MeTTAは、教師付きモデルと自己教師付きモデルの両方において、ImageNetの線形評価の質を大幅に向上させる。
我々は、より高品質な表現を推論するためにアンサンブルの成功を広めることが、多くの新しいアンサンブルアプリケーションを開く重要なステップであると信じている。
論文 参考訳(メタデータ) (2021-06-15T10:49:46Z) - Trusted Multi-View Classification [76.73585034192894]
本稿では,信頼された多視点分類と呼ばれる新しい多視点分類手法を提案する。
さまざまなビューをエビデンスレベルで動的に統合することで、マルチビュー学習のための新しいパラダイムを提供する。
提案アルゴリズムは,分類信頼性とロバスト性の両方を促進するために,複数のビューを併用する。
論文 参考訳(メタデータ) (2021-02-03T13:30:26Z) - Learn what you can't learn: Regularized Ensembles for Transductive
Out-of-distribution Detection [76.39067237772286]
ニューラルネットワークの現在のアウト・オブ・ディストリビューション(OOD)検出アルゴリズムは,様々なOOD検出シナリオにおいて不満足な結果をもたらすことを示す。
本稿では,テストデータのバッチを観察した後に検出方法を調整することで,このような「ハード」なOODシナリオがいかに有用かを検討する。
本稿では,テストデータと正規化に人工ラベリング手法を用いて,テストバッチ内のOODサンプルに対してのみ矛盾予測を生成するモデルのアンサンブルを求める手法を提案する。
論文 参考訳(メタデータ) (2020-12-10T16:55:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。