論文の概要: Approximate Bayesian Computation with Path Signatures
- arxiv url: http://arxiv.org/abs/2106.12555v1
- Date: Wed, 23 Jun 2021 17:25:43 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-24 15:12:28.923303
- Title: Approximate Bayesian Computation with Path Signatures
- Title(参考訳): パスシグネチャを用いた近似ベイズ計算
- Authors: Joel Dyer, Patrick Cannon, Sebastian M Schmon
- Abstract要約: 本稿では,時系列データ間の距離を構築するための自然候補としてパスシグネチャを導入する。
実験により, 従来の時系列モデルよりも高精度なベイズ後方推定が可能であることが示された。
- 参考スコア(独自算出の注目度): 0.5156484100374059
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Simulation models of scientific interest often lack a tractable likelihood
function, precluding standard likelihood-based statistical inference. A popular
likelihood-free method for inferring simulator parameters is approximate
Bayesian computation, where an approximate posterior is sampled by comparing
simulator output and observed data. However, effective measures of closeness
between simulated and observed data are generally difficult to construct,
particularly for time series data which are often high-dimensional and
structurally complex. Existing approaches typically involve manually
constructing summary statistics, requiring substantial domain expertise and
experimentation, or rely on unrealistic assumptions such as iid data. Others
are inappropriate in more complex settings like multivariate or irregularly
sampled time series data. In this paper, we introduce the use of path
signatures as a natural candidate feature set for constructing distances
between time series data for use in approximate Bayesian computation
algorithms. Our experiments show that such an approach can generate more
accurate approximate Bayesian posteriors than existing techniques for time
series models.
- Abstract(参考訳): 科学的な関心のシミュレーションモデルは、しばしば、標準的確率に基づく統計推論に先行して、扱いやすい確率関数を欠いている。
シミュレータのパラメータを推定する一般的な帰納法として近似ベイズ計算があり、シミュレータ出力と観測データを比較して近似後段をサンプリングする。
しかし,特に高次元で構造的に複雑である時系列データでは,シミュレーションデータと観測データとの密接度を効果的に測定することは一般的に困難である。
既存のアプローチは通常、手動で要約統計を構築したり、ドメインの専門知識や実験を必要としたり、idデータのような非現実的な仮定に依存したりする。
その他、多変量や不規則にサンプリングされた時系列データのようなより複雑な設定では不適切である。
本稿では,近似ベイズ計算アルゴリズムで使用する時系列データ間の距離を構築するための自然候補特徴集合としてパスシグネチャを用いることを提案する。
実験により, 従来の時系列モデルよりも高精度なベイズ後方推定が可能であることが示された。
関連論文リスト
- Compositional simulation-based inference for time series [21.9975782468709]
シミュレータは、時間とともに何千もの単一状態遷移を通して現実世界のダイナミクスをエミュレートする。
本研究では,個々の状態遷移に整合したパラメータを局所的に同定することで,マルコフシミュレータを活用可能なSBIフレームワークを提案する。
次に、これらの局所的な結果を合成して、時系列の観測全体と一致した後続のオーバーパラメータを求める。
論文 参考訳(メタデータ) (2024-11-05T01:55:07Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
シミュレーションベース推論(SBI)は、入力パラメータを所定の観測に関連付ける後部分布を近似することができる。
本研究では、モデルのパラメータをより正確に推測するために、複数の観測値が利用できる、背の高いデータ拡張について考察する。
提案手法を,最近提案した各種数値実験の競合手法と比較し,数値安定性と計算コストの観点から,その優位性を実証した。
論文 参考訳(メタデータ) (2024-04-11T09:23:36Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
本稿では,グラフ時間過程と異常スコアラを用いて異常を検出するGST-Proという新しいフレームワークを提案する。
実験結果から,GST-Pro法は時系列データ中の異常を効果的に検出し,最先端の手法より優れていることがわかった。
論文 参考訳(メタデータ) (2024-01-11T10:10:16Z) - Neural Likelihood Approximation for Integer Valued Time Series Data [0.0]
我々は、基礎となるモデルの無条件シミュレーションを用いて訓練できるニューラルな可能性近似を構築した。
本手法は,多くの生態学的および疫学的モデルを用いて推定を行うことにより実証する。
論文 参考訳(メタデータ) (2023-10-19T07:51:39Z) - Learning to Bound Counterfactual Inference in Structural Causal Models
from Observational and Randomised Data [64.96984404868411]
我々は、従来のEMベースのアルゴリズムを拡張するための全体的なデータの特徴付けを導出する。
新しいアルゴリズムは、そのような混合データソースからモデルパラメータの(不特定性)領域を近似することを学ぶ。
反実的な結果に間隔近似を与え、それが特定可能な場合の点に崩壊する。
論文 参考訳(メタデータ) (2022-12-06T12:42:11Z) - Robust Bayesian Inference for Simulator-based Models via the MMD
Posterior Bootstrap [13.448658162594604]
後部ブートストラップと最大平均誤差推定器に基づく新しいアルゴリズムを提案する。
これにより、強い性質を持つ高パラレライズ可能なベイズ推論アルゴリズムが導かれる。
このアプローチは、g-and-k分布やトグル・スウィッチモデルなど、さまざまな例に基づいて評価される。
論文 参考訳(メタデータ) (2022-02-09T22:12:19Z) - Time Series Anomaly Detection by Cumulative Radon Features [32.36217153362305]
本研究は,分布距離測定と組み合わせた場合,浅部特徴が十分であると主張する。
提案手法は,各時系列を高次元的特徴分布としてモデル化する。
累積ラドン特徴量を用いて各時系列をパラメータ化することにより、正規時系列の分布を効率的に効果的にモデル化できることを示す。
論文 参考訳(メタデータ) (2022-02-08T18:58:53Z) - TACTiS: Transformer-Attentional Copulas for Time Series [76.71406465526454]
時間変化量の推定は、医療や金融などの分野における意思決定の基本的な構成要素である。
本稿では,アテンションベースデコーダを用いて関節分布を推定する多元的手法を提案する。
本研究では,本モデルが実世界の複数のデータセットに対して最先端の予測を生成することを示す。
論文 参考訳(メタデータ) (2022-02-07T21:37:29Z) - Learning summary features of time series for likelihood free inference [93.08098361687722]
時系列データから要約機能を自動的に学習するためのデータ駆動型戦略を提案する。
以上の結果から,データから要約的特徴を学習することで,手作りの値に基づいてLFI手法よりも優れる可能性が示唆された。
論文 参考訳(メタデータ) (2020-12-04T19:21:37Z) - A Multi-Channel Neural Graphical Event Model with Negative Evidence [76.51278722190607]
イベントデータセットは、タイムライン上で不規則に発生するさまざまなタイプのイベントのシーケンスである。
基礎となる強度関数を推定するために,非パラメトリックディープニューラルネットワーク手法を提案する。
論文 参考訳(メタデータ) (2020-02-21T23:10:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。