論文の概要: Robust Bayesian Inference for Simulator-based Models via the MMD
Posterior Bootstrap
- arxiv url: http://arxiv.org/abs/2202.04744v1
- Date: Wed, 9 Feb 2022 22:12:19 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-12 07:35:28.546431
- Title: Robust Bayesian Inference for Simulator-based Models via the MMD
Posterior Bootstrap
- Title(参考訳): MMD後ブートストラップを用いたシミュレータモデルに対するロバストベイズ推定
- Authors: Charita Dellaporta, Jeremias Knoblauch, Theodoros Damoulas,
Fran\c{c}ois-Xavier Briol
- Abstract要約: 後部ブートストラップと最大平均誤差推定器に基づく新しいアルゴリズムを提案する。
これにより、強い性質を持つ高パラレライズ可能なベイズ推論アルゴリズムが導かれる。
このアプローチは、g-and-k分布やトグル・スウィッチモデルなど、さまざまな例に基づいて評価される。
- 参考スコア(独自算出の注目度): 13.448658162594604
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Simulator-based models are models for which the likelihood is intractable but
simulation of synthetic data is possible. They are often used to describe
complex real-world phenomena, and as such can often be misspecified in
practice. Unfortunately, existing Bayesian approaches for simulators are known
to perform poorly in those cases. In this paper, we propose a novel algorithm
based on the posterior bootstrap and maximum mean discrepancy estimators. This
leads to a highly-parallelisable Bayesian inference algorithm with strong
robustness properties. This is demonstrated through an in-depth theoretical
study which includes generalisation bounds and proofs of frequentist
consistency and robustness of our posterior. The approach is then assessed on a
range of examples including a g-and-k distribution and a toggle-switch model.
- Abstract(参考訳): シミュレータに基づくモデルは、確率が難解であるが合成データのシミュレーションが可能であるモデルである。
それらはしばしば複雑な実世界の現象を記述するために使われ、実際では誤記されることがある。
残念ながら、シミュレーターに対する既存のベイズ的アプローチは、それらの場合、性能が良くないことが知られている。
本稿では,後方ブートストラップと最大平均偏差推定器を用いた新しいアルゴリズムを提案する。
これにより、強い堅牢性を持つ高並列性ベイズ推論アルゴリズムが導かれる。
これは、一般化境界と、我々の後部の頻繁な一貫性と堅牢性の証明を含む詳細な理論的研究によって実証される。
このアプローチは、g-and-kディストリビューションやtoggle-switchモデルなど、さまざまな例で評価される。
関連論文リスト
- A variational neural Bayes framework for inference on intractable posterior distributions [1.0801976288811024]
トレーニングされたニューラルネットワークに観測データを供給することにより、モデルパラメータの後方分布を効率的に取得する。
理論的には、我々の後部はKulback-Leiblerの発散において真の後部に収束することを示す。
論文 参考訳(メタデータ) (2024-04-16T20:40:15Z) - All-in-one simulation-based inference [19.41881319338419]
我々は、現在の制限を克服する新しい償却推論手法、Simformerを提案する。
Simformerは、ベンチマークタスクにおける現在の最先端の償却推論アプローチより優れています。
関数値パラメータを持つモデルに適用することができ、欠落または非構造化データによる推論シナリオを処理でき、パラメータとデータの合同分布の任意の条件をサンプリングすることができる。
論文 参考訳(メタデータ) (2024-04-15T10:12:33Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
シミュレーションベース推論(SBI)は、入力パラメータを所定の観測に関連付ける後部分布を近似することができる。
本研究では、モデルのパラメータをより正確に推測するために、複数の観測値が利用できる、背の高いデータ拡張について考察する。
提案手法を,最近提案した各種数値実験の競合手法と比較し,数値安定性と計算コストの観点から,その優位性を実証した。
論文 参考訳(メタデータ) (2024-04-11T09:23:36Z) - On Least Square Estimation in Softmax Gating Mixture of Experts [78.3687645289918]
決定論的MoEモデルに基づく最小二乗推定器(LSE)の性能について検討する。
我々は,多種多様な専門家関数の収束挙動を特徴付けるために,強い識別可能性という条件を確立する。
本研究は,専門家の選択に重要な意味を持つ。
論文 参考訳(メタデータ) (2024-02-05T12:31:18Z) - Distributed Bayesian Learning of Dynamic States [65.7870637855531]
提案アルゴリズムは有限状態隠れマルコフモデルに対する分散ベイズフィルタタスクである。
逐次状態推定や、動的環境下でのソーシャルネットワーク上での意見形成のモデル化に使用できる。
論文 参考訳(メタデータ) (2022-12-05T19:40:17Z) - Nonparametric likelihood-free inference with Jensen-Shannon divergence
for simulator-based models with categorical output [1.4298334143083322]
シミュレータに基づく統計モデルに対する自由な推論は、機械学習と統計のコミュニティの両方において、関心の高まりを招いている。
本稿では、Jensen-Shannon- divergenceの計算特性を用いて、モデルパラメータに対する推定、仮説テスト、信頼区間の構築を可能にする理論的結果のセットを導出する。
このような近似はより集中的なアプローチの素早い代替手段であり、シミュレーターベースモデルの多種多様な応用には魅力的である。
論文 参考訳(メタデータ) (2022-05-22T18:00:13Z) - Inverting brain grey matter models with likelihood-free inference: a
tool for trustable cytoarchitecture measurements [62.997667081978825]
脳の灰白質細胞構造の特徴は、体密度と体積に定量的に敏感であり、dMRIでは未解決の課題である。
我々は新しいフォワードモデル、特に新しい方程式系を提案し、比較的スパースなb殻を必要とする。
次に,提案手法を逆転させるため,確率自由推論 (LFI) として知られるベイズ解析から最新のツールを適用した。
論文 参考訳(メタデータ) (2021-11-15T09:08:27Z) - Approximate Bayesian inference from noisy likelihoods with Gaussian
process emulated MCMC [0.24275655667345403]
ガウス過程(GP)を用いた対数様関数をモデル化する。
主な方法論的革新は、正確なメトロポリス・ハスティングス(MH)サンプリングが行う進歩をエミュレートするためにこのモデルを適用することである。
得られた近似サンプリング器は概念的には単純で、試料効率が高い。
論文 参考訳(メタデータ) (2021-04-08T17:38:02Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) モデルを提案する。
我々のモデルは、フレキシブルニューラルネットワークを用いて各タイムスタンプの平均と分散をパラメータ化する。
合成データセットと公開実世界のベンチマークの両方において,本モデルの有効性を示す。
論文 参考訳(メタデータ) (2021-02-02T06:15:15Z) - Simulation-efficient marginal posterior estimation with swyft: stop
wasting your precious time [5.533353383316288]
本研究では,ネスト型ニューラル・サイエンス・ツー・エビデンス比推定とシミュレーションの再利用のためのアルゴリズムを提案する。
これらのアルゴリズムが組み合わさって、縁部および関節後部の自動的および極端にシミュレーターによる効率的な推定を可能にする。
論文 参考訳(メタデータ) (2020-11-27T19:00:07Z) - Likelihood-Free Inference with Deep Gaussian Processes [70.74203794847344]
サーロゲートモデルは、シミュレータ評価の回数を減らすために、可能性のない推論に成功している。
本稿では,より不規則な対象分布を扱えるディープガウス過程(DGP)サロゲートモデルを提案する。
本実験は,DGPがマルチモーダル分布を持つ目的関数上でGPよりも優れ,単調な場合と同等の性能を維持できることを示す。
論文 参考訳(メタデータ) (2020-06-18T14:24:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。