Stabilizer R\'enyi entropy
- URL: http://arxiv.org/abs/2106.12587v5
- Date: Sat, 12 Mar 2022 01:47:10 GMT
- Title: Stabilizer R\'enyi entropy
- Authors: Lorenzo Leone, Salvatore F. E. Oliviero and Alioscia Hamma
- Abstract summary: We introduce a novel measure for the quantum property of nonstabilizerness - commonly known as "magic"
We show that this is a good measure of nonstabilizerness from the point of view of resource theory and show bounds with other known measures.
We show that the nonstabilizerness is intimately connected to out-of-time-order correlation functions and that maximal levels of nonstabilizerness are necessary for quantum chaos.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a novel measure for the quantum property of nonstabilizerness -
commonly known as "magic" - by considering the R\'enyi entropy of the
probability distribution associated to a pure quantum state given by the square
of the expectation value of Pauli strings in that state. We show that this is a
good measure of nonstabilizerness from the point of view of resource theory and
show bounds with other known measures. The stabilizer R\'enyi entropy has the
advantage of being easily computable because it does not need a minimization
procedure. We present a protocol for an experimental measurement by randomized
measurements. We show that the nonstabilizerness is intimately connected to
out-of-time-order correlation functions and that maximal levels of
nonstabilizerness are necessary for quantum chaos.
Related papers
- Non-stabilizerness in kinetically-constrained Rydberg atom arrays [0.11060425537315084]
We show that Rydberg atom arrays provide a natural reservoir of non-stabilizerness that extends beyond single qubits.
We explain the origin of Rydberg nonstabilizerness via a quantum circuit decomposition of the wave function.
arXiv Detail & Related papers (2024-06-20T14:17:34Z) - Stabilizer entropies are monotones for magic-state resource theory [0.0]
We establish the monotonicity of stabilizer entropies for $alpha geq 2$ within the context of magic-state resource theory restricted to pure states.
We extend stabilizer entropies to mixed states as monotones via convex roof constructions.
arXiv Detail & Related papers (2024-04-17T18:00:02Z) - Critical behaviors of non-stabilizerness in quantum spin chains [0.0]
Non-stabilizerness measures the extent to which a quantum state deviates from stabilizer states.
In this work, we investigate the behavior of non-stabilizerness around criticality in quantum spin chains.
arXiv Detail & Related papers (2023-09-01T18:00:04Z) - Measuring nonstabilizerness via multifractal flatness [0.0]
Universal quantum computing requires nonstabilizer (magic) quantum states.
We prove that a quantum state is a stabilizer if and only if all states belonging to its Clifford orbit have a flat probability distribution.
We show that the multifractal flatness provides an experimentally and computationally viable nonstabilizerness certification.
arXiv Detail & Related papers (2023-05-19T16:32:59Z) - Quantifying non-stabilizerness through entanglement spectrum flatness [0.0]
We establish a direct connection between non-stabilizerness and entanglement spectrum flatness for a pure quantum state.
We show that this connection can be exploited to efficiently probe non-stabilizerness even in presence of noise.
Our results reveal a direct connection between non-stabilizerness and entanglement response, and define a clear experimental protocol to probe non-stabilizerness in cold atom and solid-state platforms.
arXiv Detail & Related papers (2023-04-03T17:44:37Z) - Full counting statistics as probe of measurement-induced transitions in
the quantum Ising chain [62.997667081978825]
We show that local projective measurements induce a modification of the out-of-equilibrium probability distribution function of the local magnetization.
In particular we describe how the probability distribution of the former shows different behaviour in the area-law and volume-law regimes.
arXiv Detail & Related papers (2022-12-19T12:34:37Z) - Tight Exponential Analysis for Smoothing the Max-Relative Entropy and
for Quantum Privacy Amplification [56.61325554836984]
The max-relative entropy together with its smoothed version is a basic tool in quantum information theory.
We derive the exact exponent for the decay of the small modification of the quantum state in smoothing the max-relative entropy based on purified distance.
arXiv Detail & Related papers (2021-11-01T16:35:41Z) - Shannon theory for quantum systems and beyond: information compression
for fermions [68.8204255655161]
We show that entanglement fidelity in the fermionic case is capable of evaluating the preservation of correlations.
We introduce a fermionic version of the source coding theorem showing that, as in the quantum case, the von Neumann entropy is the minimal rate for which a fermionic compression scheme exists.
arXiv Detail & Related papers (2021-06-09T10:19:18Z) - Exact many-body scars and their stability in constrained quantum chains [55.41644538483948]
Quantum scars are non-thermal eigenstates characterized by low entanglement entropy.
We study the response of these exact quantum scars to perturbations by analysing the scaling of the fidelity susceptibility with system size.
arXiv Detail & Related papers (2020-11-16T19:05:50Z) - Fine-Grained Analysis of Stability and Generalization for Stochastic
Gradient Descent [55.85456985750134]
We introduce a new stability measure called on-average model stability, for which we develop novel bounds controlled by the risks of SGD iterates.
This yields generalization bounds depending on the behavior of the best model, and leads to the first-ever-known fast bounds in the low-noise setting.
To our best knowledge, this gives the firstever-known stability and generalization for SGD with even non-differentiable loss functions.
arXiv Detail & Related papers (2020-06-15T06:30:19Z) - In and out of equilibrium quantum metrology with mean-field quantum
criticality [68.8204255655161]
We study the influence that collective transition phenomena have on quantum metrological protocols.
The single spherical quantum spin (SQS) serves as stereotypical toy model that allows analytical insights on a mean-field level.
arXiv Detail & Related papers (2020-01-09T19:20:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.