Operational interpretation of the Stabilizer Entropy
- URL: http://arxiv.org/abs/2507.22883v1
- Date: Wed, 30 Jul 2025 17:58:40 GMT
- Title: Operational interpretation of the Stabilizer Entropy
- Authors: Lennart Bittel, Lorenzo Leone,
- Abstract summary: We show that the Clifford orbit of a quantum state becomes exponentially indistinguishable from Haar-random states.<n>We also establish that the optimal probability of distinguishing a given quantum state from a set of stabilizer states is also governed by the stabilizer entropy.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Magic-state resource theory is a fundamental framework with far-reaching applications in quantum error correction and the classical simulation of quantum systems. Recent advances have significantly deepened our understanding of magic as a resource across diverse domains, including many-body physics, nuclear and particle physics, and quantum chemistry. Central to this progress is the stabilizer R\'enyi entropy, a computable and experimentally accessible magic monotone. Despite its widespread adoption, a rigorous operational interpretation of the stabilizer entropy has remained an open problem. In this work, we provide such an interpretation in the context of quantum property testing. By showing that the stabilizer entropy is the most robust measurable magic monotone, we demonstrate that the Clifford orbit of a quantum state becomes exponentially indistinguishable from Haar-random states, at a rate governed by the stabilizer entropy $M(\psi)$ and the number of available copies. This implies that the Clifford orbit forms an approximate state $k$-design, with an approximation error $\Theta(\exp(-M(\psi))$. Conversely, we establish that the optimal probability of distinguishing a given quantum state from the set of stabilizer states is also governed by its stabilizer entropy. These results reveal that the stabilizer entropy quantitatively characterizes the transition from stabilizer states to universal quantum states, thereby offering a comprehensive operational perspective of the stabilizer entropy as a quantum resource.
Related papers
- Grassmann Variational Monte Carlo with neural wave functions [45.935798913942904]
We formalize the framework introduced by Pfau et al.citepfau2024accurate in terms of Grassmann geometry of the Hilbert space.<n>We validate our approach on the Heisenberg quantum spin model on the square lattice, achieving highly accurate energies and physical observables for a large number of excited states.
arXiv Detail & Related papers (2025-07-14T13:53:13Z) - Quantum simulation of bubble nucleation across a quantum phase transition [31.874825130479174]
We use a trapped-ion quantum simulator to observe the real-time dynamics of bubble nucleation'' induced by quantum fluctuations.<n>Results demonstrate the power of quantum simulators to probe out-of-equilibrium many-body physics.
arXiv Detail & Related papers (2025-05-14T17:57:25Z) - Powering a quantum clock with a non-equilibrium steady state [50.24983453990065]
We propose powering a quantum clock with the non-thermal resources offered by the stationary state of an integrable quantum spin chain.<n>Using experimentally relevant examples of quantum spin chains, we suggest crossing a phase transition point is crucial for optimal performance.
arXiv Detail & Related papers (2024-12-17T17:25:11Z) - Amortized Stabilizer Rényi Entropy of Quantum Dynamics [7.064711321804743]
We introduce the amortized $alpha$-stabilizer R'enyi entropy, a magic monotone for unitary operations that quantifies the nonstabilizerness generation capability of quantum dynamics.
We demonstrate the versatility of the amortized $alpha$-stabilizer R'enyi entropy in investigating the nonstabilizerness resources of quantum dynamics of computational and fundamental interest.
arXiv Detail & Related papers (2024-09-10T17:23:05Z) - Critical behaviors of non-stabilizerness in quantum spin chains [0.0]
Non-stabilizerness measures the extent to which a quantum state deviates from stabilizer states.
In this work, we investigate the behavior of non-stabilizerness around criticality in quantum spin chains.
arXiv Detail & Related papers (2023-09-01T18:00:04Z) - Measuring nonstabilizerness via multifractal flatness [0.0]
Universal quantum computing requires nonstabilizer (magic) quantum states.
We prove that a quantum state is a stabilizer if and only if all states belonging to its Clifford orbit have a flat probability distribution.
We show that the multifractal flatness provides an experimentally and computationally viable nonstabilizerness certification.
arXiv Detail & Related papers (2023-05-19T16:32:59Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Demonstrating Quantum Microscopic Reversibility Using Coherent States of
Light [58.8645797643406]
We propose and experimentally test a quantum generalization of the microscopic reversibility when a quantum system interacts with a heat bath.
We verify that the quantum modification for the principle of microscopic reversibility is critical in the low-temperature limit.
arXiv Detail & Related papers (2022-05-26T00:25:29Z) - Magic-state resource theory for the ground state of the transverse-field
Ising model [0.0]
We study the behavior of the stabilizer R'enyi entropy in the integrable transverse field Ising spin chain.
We show that the locality of interactions results in a localized stabilizer R'enyi entropy in the gapped phase.
arXiv Detail & Related papers (2022-05-04T18:00:03Z) - Stabilizer R\'enyi entropy [0.0]
We introduce a novel measure for the quantum property of nonstabilizerness - commonly known as "magic"
We show that this is a good measure of nonstabilizerness from the point of view of resource theory and show bounds with other known measures.
We show that the nonstabilizerness is intimately connected to out-of-time-order correlation functions and that maximal levels of nonstabilizerness are necessary for quantum chaos.
arXiv Detail & Related papers (2021-06-23T18:00:02Z) - Catalytic Transformations of Pure Entangled States [62.997667081978825]
Entanglement entropy is the von Neumann entropy of quantum entanglement of pure states.
The relation between entanglement entropy and entanglement distillation has been known only for the setting, and the meaning of entanglement entropy in the single-copy regime has so far remained open.
Our results imply that entanglement entropy quantifies the amount of entanglement available in a bipartite pure state to be used for quantum information processing, giving results an operational meaning also in entangled single-copy setup.
arXiv Detail & Related papers (2021-02-22T16:05:01Z) - Exact many-body scars and their stability in constrained quantum chains [55.41644538483948]
Quantum scars are non-thermal eigenstates characterized by low entanglement entropy.
We study the response of these exact quantum scars to perturbations by analysing the scaling of the fidelity susceptibility with system size.
arXiv Detail & Related papers (2020-11-16T19:05:50Z) - Quantum Zeno effect appears in stages [64.41511459132334]
In the quantum Zeno effect, quantum measurements can block the coherent oscillation of a two level system by freezing its state to one of the measurement eigenstates.
We show that the onset of the Zeno regime is marked by a $textitcascade of transitions$ in the system dynamics as the measurement strength is increased.
arXiv Detail & Related papers (2020-03-23T18:17:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.